Publications by authors named "Diana Forster"

Women nearly twice as often develop social anxiety disorder (SAD) compared to men. The reason for this difference is still being debated. The present study investigates gender differences and the effect of male versus female agents in low (LSA) and high socially anxious (HSA) participants regarding the acquisition and extinction of social fear in virtual reality (VR).

View Article and Find Full Text PDF

In an approach combining high resolution X-ray diffraction at low temperatures with density functional calculations, two closo-borates, B12H12(2-) (1) and B10H10(2-) (2), and two arachno-boranes, B10H12L2 (L = amine (3) or acetonitrile (4)), are studied by means of Atoms In Molecules (AIM) theory and Electron Localizability Indicator (ELI-D). The charge transfer via the dative N-B bonds in the arachno-boranes and via dihydrogen contacts in the closo-borates is quantified. The dative N-B bond in 4 is significantly shorter and stronger than that in 3 and in small N-B Lewis acid base adducts from the literature.

View Article and Find Full Text PDF

In an approach combining high-resolution X-ray diffraction at low temperatures with density functional theory calculations, two closo-borates, B(12)H(12)(2-) (1) and B(10)H(10)(2-) (2), and two arachno-boranes, B(10)H(12)L(2) [L = amine (3) or acetonitrile (4)], were analyzed by means of the atoms-in-molecules (AIM) theory and electron localizability indicator (ELI-D). The two-electron three-center (2e3c) bonds of the borane cages are investigated with the focus on real-space indicators for chemical bonding and electron delocalization. In compound 2, only two of the three expected bond critical points (bcp's) are found.

View Article and Find Full Text PDF

The electronic characteristics of the dative N−B bond in three Lewis acid−base adducts, hydrazine borane, hydrazine bisborane, and ammonia trifluoroborane, are analyzed by an approach combining experimental electron density determination with a broad variety of theoretical calculations. Special focus is directed to the weak dihydrogen contacts in hydrazine borane. The Atoms In Molecules partitioning scheme is complemented by additional methods like the Source Function, and the Electron Localizability Indicator.

View Article and Find Full Text PDF

In the last decade three different data bank approaches have been developed that are intended to make electron-density examinations of large biologically important molecules possible. They rely on Bader's concept of transferability of submolecular fragments with retention of their electronic properties. Therefore, elaborate studies on the quantification of transferability in experiment and theory are still very important.

View Article and Find Full Text PDF

In order to characterize the 2-electron 3-center hydride bridges in arachno-tetraborane, an experimental charge-density study was performed complemented with various theoretical calculations. The charge-density distribution and its topological properties were analyzed according to the "atoms in molecules" theory of Bader. The asymmetric bonding situation of the highly polarized hydride bridges is discussed in detail.

View Article and Find Full Text PDF

Two crystalline modifications of the tripeptide L-Ala-L-Tyr-L-Ala, which have different solvent molecules in the crystal structure (water and ethanol for modifications 1 and 2), were the subject of experimental charge density studies based on high resolution X-ray data collected at ultra-low temperatures of 9 K (1) and 20 K (2), respectively. The molecular structures and the intermolecular interactions were found to be rather similar in the two crystal lattices, so that this study allowed the reproducibility of the charge density of a given molecule in different (but widely comparable) crystalline environments to be examined. With respect to bond topological and atomic properties, the agreement between the two modifications of the title tripeptide was in the same range as found from the comparison with the previously reported results of tri-L-alanine.

View Article and Find Full Text PDF

The X-ray crystal structure of the title compound, C8H15N3O4.H2O, at 20 K (space group P2(1)) reveals that the molecular conformation of the tripeptide is remarkably different from the water-free form (space group P2(1)2(1)2(1)) reported previously [Padiyar & Seshadri (1996), Acta Cryst. C52, 1693-1695].

View Article and Find Full Text PDF