The conversion and transmission of misfolded proteins established the basis for the prion concept. Neurodegenerative diseases are considered "prion-like" disorders that lack infectivity. Among them, tauopathies are characterized by the conversion of native tau protein into an abnormally folded aggregate.
View Article and Find Full Text PDFThis scientific commentary refers to 'Analysis of α-synuclein species enriched from cerebral cortex of humans with sporadic dementia with Lewy bodies', by Sanderson (https://doi.org/10.1093/braincomms/fcaa010).
View Article and Find Full Text PDFBackground: We have evaluated the efficacy of targeting the toxic, oligomeric form of tau protein by passive immunotherapy in a mouse model of synucleinopathy. Parkinson's disease and Lewy body dementia are two of the most common neurodegenerative disorders and are primarily characterized by the accumulation of α-synuclein in Lewy bodies. However, evidence shows that smaller, oligomeric aggregates are likely the most toxic form of the protein.
View Article and Find Full Text PDFBackground: The coexistence of α-synuclein and tau aggregates in several neurodegenerative disorders, including Parkinson's disease and Alzheimer's disease, raises the possibility that a seeding mechanism is involved in disease progression.
Methods: To further investigate the role of α-synuclein in the tau aggregation pathway, we performed a set of experiments using both recombinant and brain-derived tau and α-synuclein oligomers to seed monomeric tau aggregation in vitro and in vivo. Brain-derived tau oligomers were isolated from well-characterized cases of progressive supranuclear palsy (n = 4) and complexes of brain-derived α-synuclein/tau oligomers isolated from patients with Parkinson's disease (n = 4).
The importance of vascular contributions to cognitive impairment and dementia (VCID) associated with Alzheimer's disease (AD) and related neurodegenerative diseases is increasingly recognized, however, the underlying mechanisms remain obscure. There is growing evidence that in addition to Aβ deposition, accumulation of hyperphosphorylated oligomeric tau contributes significantly to AD etiology. Tau oligomers are toxic and it has been suggested that they propagate in a "prion-like" fashion, inducing endogenous tau misfolding in cells.
View Article and Find Full Text PDFAging has long been considered as the main risk factor for several neurodegenerative disorders including a large group of diseases known as tauopathies. Even though neurofibrillary tangles (NFTs) have been examined as the main histopathological hallmark, they do not seem to play a role as the toxic entities leading to disease. Recent studies suggest that an intermediate form of tau, prior to NFT formation, the tau oligomer, is the true toxic species.
View Article and Find Full Text PDFObjective: With an increasing incidence of Alzheimer's disease (AD) and neurodegenerative tauopathies, there is an urgent need to develop reliable biomarkers for the diagnosis and monitoring of the disease, such as the recently discovered toxic tau oligomers. Here, we aimed to demonstrate the presence of tau oligomers in the cerebrospinal fluid (CSF) of patients with cognitive deficits, and to determine whether tau oligomers could serve as a potential biomarker for AD.
Methods: A multicentric collaborative study involving a double-blinded analysis with a total of 98 subjects with moderate to severe AD ( = 41), mild AD ( = 31), and nondemented control subjects ( = 26), and two pilot studies of 33 total patients with AD ( = 19) and control ( = 14) subjects were performed.
It is well-established that inflammation plays an important role in Alzheimer's disease (AD) and frontotemporal lobar dementia (FTLD). Inflammation and synapse loss occur in disease prior to the formation of larger aggregates, but the contribution of tau to inflammation has not yet been thoroughly investigated. Tau pathologically aggregates to form large fibrillar structures known as tangles.
View Article and Find Full Text PDFTau aggregation is a pathological feature of numerous neurodegenerative disorders and has also been shown to occur under certain conditions of traumatic brain injury (TBI). Currently, no effective treatments exist for the long-term effects of TBI. In some cases, TBI not only induces cognitive changes immediately post-injury, but also leads to increased incidence of neurodegeneration later in life.
View Article and Find Full Text PDFFront Cell Neurosci
December 2015
Alzheimer's disease (AD) is a progressive disorder in which the most noticeable symptoms are cognitive impairment and memory loss. However, the precise mechanism by which those symptoms develop remains unknown. Of note, neuronal loss occurs at sites where synaptic dysfunction is observed earlier, suggesting that altered synaptic connections precede neuronal loss.
View Article and Find Full Text PDFAmyloid-beta (Aβ) oligomers have emerged as the most toxic species in Alzheimer's disease (AD) and other amyloid pathologies. Also, Aβ-42 peptide is more aggregation-prone compared to other Aβ isoforms. Thus, we synthesized a small peptide of repeated sequence containing the last three amino acids, Val-40, Ile-41, and Ala-42 of Aβ-42 that was subsequently aggregated and used to generate a novel antibody, VIA.
View Article and Find Full Text PDFIn Alzheimer's disease (AD), the pathological accumulation of tau appears to be a downstream effect of amyloid β protein (Aβ). However, the relationship between these two proteins and memory loss is unclear. In this study, we evaluated the specific removal of pathological tau oligomers in aged Tg2576 mice by passive immunotherapy using tau oligomer-specific monoclonal antibody.
View Article and Find Full Text PDFAlzheimer's disease is a complex disease characterized by overlapping phenotypes with different neurodegenerative disorders. Oligomers are considered the most toxic species in amyloid pathologies. We examined human AD brain samples using an anti-oligomer antibody generated in our laboratory and detected potential hybrid oligomers composed of amyloid-β, prion protein, α-synuclein, and TDP-43 phosphorylated at serines 409 and 410.
View Article and Find Full Text PDFNeurodegenerative disease is one of the greatest health concerns today and with no effective treatment in sight, it is crucial that researchers find a safe and successful therapeutic. While neurofibrillary tangles are considered the primary tauopathy hallmark, more evidence continues to come to light to suggest that soluble, intermediate tau aggregates--tau oligomers--are the most toxic species in disease. These intermediate tau species may also be responsible for the spread of pathology, suggesting that oligomeric tau may be the best therapeutic target.
View Article and Find Full Text PDFPathological aggregation of the microtubule-associated protein tau and subsequent accumulation of neurofibrillary tangles (NFTs) or other tau-containing inclusions are defining histopathological features of many neurodegenerative diseases, which are collectively known as tauopathies. Due to conflicting results regarding a correlation between the presence of NFTs and disease progression, the mechanism linking pathological tau aggregation with cell death is poorly understood. An emerging view is that NFTs are not the toxic entity in tauopathies; rather, tau intermediates between monomers and NFTs are pathogenic.
View Article and Find Full Text PDFRecent findings suggest that tau oligomers, which form before neurofibrillary tangles (NFTs), are the true neurotoxic tau entities in neurodegenerative tauopathies, including Alzheimer's disease (AD). Studies in animal models of tauopathy suggest that tau oligomers play a key role in eliciting behavioral and cognitive impairments. Here, we used a novel tau oligomer-specific monoclonal antibody (TOMA) for passive immunization in mice expressing mutant human tau.
View Article and Find Full Text PDFNeurodegenerative disease is one of the greatest health crises in the world and as life expectancy rises, the number of people affected will continue to increase. The most common neurodegenerative disease, Alzheimer's disease, is a tauopathy, characterized by the presence of aggregated tau, namely in the form of neurofibrillary tangles. Historically, neurofibrillary tangles have been considered the main tau species of interest in Alzheimer's disease; however, we and others have shown that tau oligomers may be the most toxic form and the species responsible for the spread of pathology.
View Article and Find Full Text PDFImpaired proteostasis is one of the main features of all amyloid diseases, which are associated with the formation of insoluble aggregates from amyloidogenic proteins. The aggregation process can be caused by overproduction or poor clearance of these proteins. However, numerous reports suggest that amyloid oligomers are the most toxic species, rather than insoluble fibrillar material, in Alzheimer's, Parkinson's, and Prion diseases, among others.
View Article and Find Full Text PDFAlzheimer's disease (AD) is characterized by the presence of amyloid plaques composed mainly of amyloid-β (Aβ) protein. Overproduction or slow clearance of Aβ initiates a cascade of pathologic events that may lead to formation of neurofibrillary tangles, neuronal cell death, and dementia. Although immunotherapy in animal models has been demonstrated to be successful at removing plaques or prefibrillar forms of Aβ, clinical trials have yielded disappointing results.
View Article and Find Full Text PDFAmyloid oligomers represent the primary pathological species for neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Toxic oligomers are formed by many different proteins and peptides, but their polydispersity makes them highly dynamic and heterogeneous. One way to stabilize these structures is to prepare constrained peptides that can be used to study amyloid intermediates, to identify oligomer-specific drugs, and to generate conformational antibodies.
View Article and Find Full Text PDFTraumatic brain injury (TBI) is a serious problem that affects millions of people in the United States alone. Multiple concussions or even a single moderate to severe TBI can also predispose individuals to develop a pathologically distinct form of tauopathy-related dementia at an early age. No effective treatments are currently available for TBI or TBI-related dementia; moreover, only recently has insight been gained regarding the mechanisms behind their connection.
View Article and Find Full Text PDFPathological aggregation of the microtubule-associated protein tau and accumulation of neurofibrillary tangles (NFT) and other inclusions containing hyperphosphorylated tau are defining histopathological features of Alzheimer disease (AD) and many other neurodegenerative diseases collectively known as tauopathies. The toxicity of tau aggregates has been demonstrated in vitro and in vivo; thus, their clearance by immunotherapy holds clinical promise. Published studies, which are limited in number, have exclusively focused on the clearance of hyperphosphorylated large tau aggregates, e.
View Article and Find Full Text PDFThe tumor suppressor p53 plays an important role in genome integrity. It is frequently mutated in all types of human cancers, making p53 a key factor in cancer progression. Two phenotypic consequences of these alterations are dominant; a loss of function and a gain of function of p53, which, in several cases, accumulates in intracellular aggregates.
View Article and Find Full Text PDFIntracerebral injection of brain extracts containing amyloid or tau aggregates in transgenic animals can induce cerebral amyloidosis and tau pathology. We extracted pure populations of tau oligomers directly from the cerebral cortex of Alzheimer disease (AD) brain. These oligomers are potent inhibitors of long term potentiation (LTP) in hippocampal brain slices and disrupt memory in wild type mice.
View Article and Find Full Text PDF