Publications by authors named "Diana Carolina Rostirolla"

Recent studies have investigated the use of retinoic acid (RA) molecule in combined chemotherapies to cancer cells as an attempt to increase treatment efficiency and circumvent cell resistance. Positive results were obtained in clinical trials from lung cancer patients treated with RA and cisplatin. Meanwhile, the signalling process that results from the interaction of both molecules remains unclear.

View Article and Find Full Text PDF

Retinoic acid (RA) promotes differentiation in multiple neurogenic cell types by promoting gene reprogramming through retinoid receptors and also by inducing cytosolic signaling events. The nuclear RXR receptors are one of the main mediators of RA cellular effects, classically by joining the direct receptors of RA, the nuclear RAR receptors, in RAR/RXR dimers which act as transcription factors. Distinct RXR genes lead to RXRα, RXRβ and RXRγ subtypes, but their specific roles in neuronal differentiation remain unclear.

View Article and Find Full Text PDF

Background/aims: Heat shock protein 70 (HSP70) has been recently described with extracellular actions, where it is actively released in inflammatory conditions. Acting as DAMPs (damage associated molecular pattern), extracellular HSP70 (eHSP70) interacts with membrane receptors and activates inflammatory pathways. At this context, the receptor for advanced glycation endproducts (RAGE) emerges as a possible candidate for interaction with eHSP70.

View Article and Find Full Text PDF

Human neuroblastoma SH-SY5Y cells have been used as an in vitro model for neurodegenerative disorders such as Parkinson's disease and can be induced to a mature neuronal phenotype through retinoic acid (RA) differentiation. However, mechanisms of RA-induced differentiation remain unclear. Here, we investigate the role of reactive species (RS) on SH-SY5Y neuroblastoma cells under RA differentiation, using the antioxidant Trolox® as co-treatment.

View Article and Find Full Text PDF

Human Thymidine Phosphorylase (HTP), also known as the platelet-derived endothelial cell growth factor (PD-ECGF) or gliostatin, catalyzes the reversible phosphorolysis of thymidine (dThd) to thymine and 2-deoxy-α-d-ribose-1-phosphate (2dR1P). HTP is a key enzyme in the pyrimidine salvage pathway involved in dThd homeostasis in cells. HTP is a target for anticancer drug development as its enzymatic activity promotes angiogenesis.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionc6mdjno8c2mmv72bialg4vkmaouc1f7b): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once