Y chromosome short tandem repeats (Y-STRs) typing is a useful tool in scenarios such as mass graves analysis or disaster victim identification and has become a routine analysis in many laboratories. Not many comparisons have been performed with the currently available commercial kits, much less with degraded skeletal remains. This research aims to evaluate the performance of three commercial Y-STR kits: Yfiler™ Plus, PowerPlex® Y23, and Investigator® Argus Y-28 in 63 degraded skeletal remains from mass graves.
View Article and Find Full Text PDFForensic DNA analysis in compromised skeletal remains may pose challenges due to DNA degradation, often resulting in partial or negative autosomal STRs profiles. To address this issue, alternative approaches such as mitochondrial DNA or SNPs typing may be employed; however, they are labour-intensive and costly. Insertion-null alleles (INNULs), short interspersed nuclear elements, have been suggested as a valuable tool for human identification in challenging samples due to their small amplicon size.
View Article and Find Full Text PDFThis research evaluates the current DNA quantification (Quantifiler™ Trio, PowerQuant®, Investigator® Quantiplex® Pro and InnoQuant® HY Fast) and autosomal STRs amplification kits (GlobalFiler™, PowerPlex® Fusion 6 C, Investigator® 24Plex QS) using 62 degraded skeletal remains from armed conflicts (petrous bone, femur, tibia, and tooth) with several parameters (autosomal small, large, and male target, degradation index, probability of degradation, number of alleles above analytical threshold, number of alleles above stochastic threshold, RFU, peak height ratio, number of reportable loci). The best qPCR/autosomal STRs amplification tandem was determined by comparing quantification results by a DNA quantity estimation based on sample average RFU. InnoQuant® HY Fast was the most sensitive kit, and no significative differences were observed among amplification kits; however, Investigator® 24 Plex QS was found to be the most sensitive in our samples.
View Article and Find Full Text PDFSkeletal remains are the only biological material that remains after long periods; however, environmental conditions such as temperature, humidity, and pH affect DNA preservation, turning skeletal remains into a challenging sample for DNA laboratories. Sample selection is a key factor, and femur and tooth have been traditionally recommended as the best substrate of genetic material. Recently, petrous bone (cochlear area) has been suggested as a better option due to its DNA yield.
View Article and Find Full Text PDFPoor nuclear DNA preservation from highly degraded skeletal remains is the most limiting factor for the genetic identification of individuals. Mitochondrial DNA (mtDNA) typing, and especially of the control region (CR), using next-generation sequencing (NGS), enables retrieval of valuable genetic information in forensic contexts where highly degraded human skeletal remains are the only source of genetic material. Currently, NGS commercial kits can type all mtDNA-CR in fewer steps than the conventional Sanger technique.
View Article and Find Full Text PDFExtracting DNA from degraded human remains poses a challenge for any forensic genetics laboratory, as it requires efficient high-throughput methods. While little research has compared different techniques, silica in suspension has been identified in the literature as the best method for recovering small fragments, which are often present in these types of samples. In this study, we tested five DNA extraction protocols on 25 different degraded skeletal remains.
View Article and Find Full Text PDFRetrieving DNA from highly degraded human skeletal remains is still a challenge due to low concentration and fragmentation, which makes it difficult to extract and purify. Recent works showed that silica-based methods allow better DNA recovery and this fact may be attributed to the type of bones and the quality of the preserved tissue. However, more systematic studies are needed to evaluate the efficiency of the different silica-based extraction methods considering the type of bones.
View Article and Find Full Text PDF