Computational techniques for analyzing biological images offer a great potential to enhance our knowledge of the biological processes underlying disorders of the nervous system. Friedreich's Ataxia (FRDA) is a rare progressive neurodegenerative inherited disorder caused by the low expression of frataxin, which is a small mitochondrial protein. In FRDA cells, the lack of frataxin promotes primarily mitochondrial dysfunction, an alteration of calcium (Ca) homeostasis and the destabilization of the actin cytoskeleton in the neurites and growth cones of sensory neurons.
View Article and Find Full Text PDFAbnormalities in actin cytoskeleton have been linked to Friedreich's ataxia (FRDA), an inherited peripheral neuropathy characterised by an early loss of neurons in dorsal root ganglia (DRG) among other clinical symptoms. Despite all efforts to date, we still do not fully understand the molecular events that contribute to the lack of sensory neurons in FRDA. We studied the adult neuronal growth cone (GC) at the cellular and molecular level to decipher the connection between frataxin and actin cytoskeleton in DRG neurons of the well-characterised YG8R Friedreich's ataxia mouse model.
View Article and Find Full Text PDFRecent observations related to the structure of the cytoskeleton in neurons and novel cytoskeletal abnormalities involved in the pathophysiology of some neurological diseases are changing our view on the function of the cytoskeletal proteins in the nervous system. These efforts allow a better understanding of the molecular mechanisms underlying neurological diseases and allow us to see beyond our current knowledge for the development of new treatments. The neuronal cytoskeleton can be described as an organelle formed by the three-dimensional lattice of the three main families of filaments: actin filaments, microtubules, and neurofilaments.
View Article and Find Full Text PDFFriedreich's ataxia (FRDA) is a neurodegenerative disorder caused by an unstable GAA repeat expansion within intron 1 of the FXN gene and characterized by peripheral neuropathy. A major feature of FRDA is frataxin deficiency with the loss of large sensory neurons of the dorsal root ganglia (DRG), namely proprioceptive neurons, undergoing dying-back neurodegeneration with progression to posterior columns of the spinal cord and cerebellar ataxia. We used isolated DRGs from a YG8R FRDA mouse model and C57BL/6J control mice for a proteomic study and a primary culture of sensory neurons from DRG to test novel pharmacological strategies.
View Article and Find Full Text PDFSynthetic antioxidants are used in the food and pharmaceutical industry, however, there is concern about their safety; this has prompted the search for new antioxidants that are effective, safe and act at low concentrations. The objective of this study is to evaluate the oxygen radical scavenging capacity and clastogenic effect of the Isoespintanol /2-isopropyl-3,6-dimethyl-5-methylphenol) in DNA of human lymphocyte compared with the BHA (Butylated hydroxyanisole). The oxygen radical scavenging ability was evaluated by methods ORACFL and ORACPGR, genotoxicity was determined by comet assay and data analysis was performed using ANOVA and Duncan test.
View Article and Find Full Text PDFFriedreich's ataxia (FRDA) is a peripheral neuropathy involving a loss of proprioceptive sensory neurons. Studies of biopsies from patients suggest that axonal dysfunction precedes the death of proprioceptive neurons in a dying-back process. We observed that the deficiency of frataxin in sensory neurons of dorsal root ganglia (DRG) of the YG8R mouse model causes the formation of axonal spheroids which retain dysfunctional mitochondria, shows alterations in the cytoskeleton and it produces impairment of axonal transport and autophagic flux.
View Article and Find Full Text PDFFrataxin (FXN) deficiency causes Friedreich's ataxia (FRDA), a multisystem disorder with neurological and non-neurological symptoms. FRDA pathophysiology combines developmental and degenerative processes of dorsal root ganglia (DRG), sensory nerves, dorsal columns and other central nervous structures. A dying-back mechanism has been proposed to explain the peripheral neuropathy and neuropathology.
View Article and Find Full Text PDF