Dietary protein restriction is increasingly recognized as a unique approach to improve metabolic health, and there is increasing interest in the mechanisms underlying this beneficial effect. Recent work indicates that the hormone FGF21 mediates the metabolic effects of protein restriction in young mice. Here we demonstrate that protein restriction increases lifespan, reduces frailty, lowers body weight and adiposity, improves physical performance, improves glucose tolerance, and alters various metabolic markers within the serum, liver, and adipose tissue of wildtype male mice.
View Article and Find Full Text PDFBackground: Dietary protein restriction is emerging as an alternative approach to treat obesity and glucose intolerance because it markedly increases plasma fibroblast growth factor 21 (FGF21) concentrations. Similarly, dietary restriction of methionine is known to mimic metabolic effects of energy and protein restriction with FGF21 as a required mechanism. However, dietary protein has been shown to be required for normal bone growth, though there is conflicting evidence as to the influence of dietary protein restriction on bone remodeling.
View Article and Find Full Text PDFReduced dietary protein intake induces adaptive physiological changes in macronutrient preference, energy expenditure, growth, and glucose homeostasis. We demonstrate that deletion of the FGF21 co-receptor βKlotho (Klb) from the brain produces mice that are unable to mount a physiological response to protein restriction, an effect that is replicated by whole-body deletion of FGF21. Mice forced to consume a low-protein diet exhibit reduced growth, increased energy expenditure, and a resistance to diet-induced obesity, but the loss of FGF21 signaling in the brain completely abrogates that response.
View Article and Find Full Text PDFDietary protein restriction increases adipose tissue uncoupling protein 1 (UCP1), energy expenditure and food intake, and these effects require the metabolic hormone fibroblast growth factor 21 (FGF21). Here we test whether the induction of energy expenditure during protein restriction requires UCP1, promotes a resistance to cold stress, and is dependent on the concomitant hyperphagia. Wildtype, Ucp1-KO and Fgf21-KO mice were placed on control and low protein (LP) diets to assess changes in energy expenditure, food intake and other metabolic endpoints.
View Article and Find Full Text PDFStimulating increased thermogenic activity in adipose tissue is an important biological target for obesity treatment, and label-free imaging techniques with the potential to quantify stimulation-associated biochemical changes to the adipose tissue are highly sought after. In this study, we used spatially resolved Fourier transform infrared (FTIR) imaging to quantify biochemical changes caused by cold exposure in the brown and subcutaneous white adipose tissues (BAT and s-WAT) of 6 week-old C57BL6 mice exposed to 30°C ( = 5), 24°C ( = 5), and 10°C ( = 5) conditions for 10 days. Fat exposed to colder temperatures demonstrated greater thermogenic activity as indicated by increased messenger RNA expression levels of a panel of thermogenic marker genes including uncoupling protein 1 (UCP-1) and Dio2.
View Article and Find Full Text PDFFGF21 contributes to the metabolic response to dietary protein restriction, and prior data implicate GCN2 as the amino acid sensor linking protein restriction to FGF21 induction. Here, we demonstrate the persistent and essential role of FGF21 in the metabolic response to protein restriction. We show that Fgf21 KO mice are fully resistant to low protein (LP)-induced changes in food intake, energy expenditure (EE), body weight gain, and metabolic gene expression for 6 months.
View Article and Find Full Text PDFEnhanced fibroblast growth factor 21 (FGF21) production and circulation has been linked to the metabolic adaptation to starvation. Here, we demonstrated that hepatic FGF21 expression is induced by dietary protein restriction, but not energy restriction. Circulating FGF21 was increased 10-fold in mice and rats fed a low-protein (LP) diet.
View Article and Find Full Text PDFDespite a wealth of clinical data showing an association between inflammation and degenerative disorders in the elderly, the immune sensors that causally link systemic inflammation to aging remain unclear. Here we detail a mechanism by which the Nlrp3 inflammasome controls systemic low-grade age-related "sterile" inflammation in both periphery and brain independently of the noncanonical caspase-11 inflammasome. Ablation of Nlrp3 inflammasome protected mice from age-related increases in the innate immune activation, alterations in CNS transcriptome, and astrogliosis.
View Article and Find Full Text PDFIn mammals, nicotinamide phosphoribosyltransferase (NAMPT) is responsible for the first and rate-limiting step in the conversion of nicotinamide to nicotinamide adenine dinucleotide (NAD+). NAD+ is an obligate cosubstrate for mammalian sirtuin-1 (SIRT1), a deacetylase that activates peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha), which in turn can activate mitochondrial biogenesis. Given that mitochondrial biogenesis is activated by exercise, we hypothesized that exercise would increase NAMPT expression, as a potential mechanism leading to increased mitochondrial content in muscle.
View Article and Find Full Text PDFObjective: Based on rodent studies, we examined the hypothesis that increased adipose tissue (AT) mass in obesity without an adequate support of vascularization might lead to hypoxia, macrophage infiltration, and inflammation.
Research Design And Methods: Oxygen partial pressure (AT pO2) and AT temperature in abdominal AT (9 lean and 12 overweight/obese men and women) was measured by direct insertion of a polarographic Clark electrode. Body composition was measured by dual-energy X-ray absorptiometry, and insulin sensitivity was measured by hyperinsulinemic-euglycemic clamp.
PR39, a naturally occurring and cell-permeable proline- and arginine-rich peptide, blocks the degradation of inhibitor of nuclear factor kappaB (IkappaBalpha), thereby attenuating inflammation. It is a noncompetitive and reversible inhibitor of 20S proteasome. To identify its basis of action, we used solution NMR spectroscopy and mutational analyses of the active fragment, PR11, which identified amino acids required for human 20S proteasome inhibiting activity.
View Article and Find Full Text PDFTranscription enhancer factor 1 is essential for cardiac, skeletal, and smooth muscle development and uses its N-terminal TEA domain (TEAD) to bind M-CAT elements. Here, we present the first structure of TEAD and show that it is a three-helix bundle with a homeodomain fold. Structural data reveal how TEAD binds DNA.
View Article and Find Full Text PDFMutations in the melanocortin-4 receptor (MC4R) are associated with obesity. The obesity syndrome observed in humans with MC4R haploinsufficiency is similar to that observed in MC4R knockout mice, including increased longitudinal growth, hyperphagia, and fasting hyperinsulinemia. For comparison with other commonly investigated models of obesity and insulin resistance, we have backcrossed Mc4r-/- mice into the C57BL/6J (B6) background.
View Article and Find Full Text PDF