The association between Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) has been extensively demonstrated, but despite this, the pathophysiological mechanisms underlying it are still unknown. In previous work, we discovered a central role for the autophagy pathway in the common alterations observed between AD and T2DM. In this study, we further investigate the role of genes belonging to this pathway, measuring their mRNA expression and protein levels in 3xTg-AD transgenic mice, an animal model of AD.
View Article and Find Full Text PDFTumor associated macrophages (TAMs) are the mostprevalent cells recruited in the tumor microenvironment (TME). Once recruited, TAMs acquire a pro-tumor phenotype characterized by a typical morphology: ameboid in the tumor core and with larger soma and thick branches in the tumor periphery. Targeting TAMs by reverting them to an anti-tumor phenotype is a promising strategy for cancer immunotherapy.
View Article and Find Full Text PDFMicroglia activation toward M1 pro-inflammatory phenotype represents one of the earliest events of neurological disorders. Therefore, reducing microglia activation should inhibit neuroinflammation, thereby delaying the progression of neurodegeneration. Recently, we pointed out the role of STAT1 signaling in hypoxia-induced M1 activation and proposed STAT1 as a suitable molecular target for the prevention and treatment of neurodegeneration.
View Article and Find Full Text PDFSTAT3 is a nuclear transcription factor that regulates genes involved in cell cycle, cell survival, and immune response. Although STAT3 activation drives cells to physiological response, its deregulation is often associated with the development and progression of many solid and hematological tumors as well as with drug resistance. STAT3 is a redox-sensitive protein, and its activation state is related to intracellular GSH levels.
View Article and Find Full Text PDFS-glutathionylation is a reversible post-translational modification of proteins that generate a mixed disulfide between glutathione to thiolate anion of cysteine residues in target proteins. In the last ten years, S-glutathionylation has been extensively studied since it represents the cellular response to oxidative stress, in physiological as well as pathological conditions. This modification may be a protective mechanism from irreversible oxidative damage and, on the other hand, may modulate protein folding and function.
View Article and Find Full Text PDFThe tumor microenvironment is a key factor in disease progression, local resistance, immune-escaping, and metastasis. The rapid proliferation of tumor cells and the aberrant structure of the blood vessels within tumors result in a marked heterogeneity in the perfusion of the tumor tissue with regions of hypoxia. Although most of the tumor cells die in these hypoxic conditions, a part of them can adapt and survive for many days or months in a dormant state.
View Article and Find Full Text PDFMicroglia are resident immune cells that act as the first active defence in the central nervous system. These cells constantly monitor the tissue microenvironment and rapidly react in response to hypoxia, infection and injuries. Hypoxia in the brain has been detected in several neurodegenerative disorders such as Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease and Huntington's disease.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
June 2019
Increasing numbers of cancer patients survive and live longer than five years after therapy, but very often side effects of cancer treatment arise at same time. One of the side effects, chemotherapy-induced cognitive impairment (CICI), also called "chemobrain" or "chemofog" by patients, brings enormous challenges to cancer survivors following successful chemotherapeutic treatment. Decreased abilities of learning, memory, attention, executive function and processing speed in cancer survivors with CICI, are some of the challenges that greatly impair survivors' quality of life.
View Article and Find Full Text PDFSTAT1 and STAT3 are two transcription factors involved in a lot of cellular functions such as immune response, proliferation, apoptosis, and cell survival. A number of literature evidences described a yin-yang relationship between activation of STAT1 and STAT3 in neurodegenerative disorders where STAT1 exerts a pro-apoptotic effect whereas STAT3 shows neuroprotective properties through the inhibition of apoptosis. Although the role of oxidative-stress in the pathogenesis of neurodegeneration is clearly described, its influence in the regulation of these pathways is poorly understood.
View Article and Find Full Text PDFTumor dormancy is a poorly understood stage in cancer progression characterized by mitotic cycle arrest in G0/G1 phase and low metabolism. The cells survive in a quiescent state and wait for appropriate environmental conditions to begin proliferation again giving rise to metastasis. Despite their key role in cancer development and metastasis, the knowledge about their biology and origin is still very limited due to the poorness of established in vitro models that faithfully recapitulated tumor dormancy.
View Article and Find Full Text PDF