Am J Respir Cell Mol Biol
December 2017
Inhalation of acrolein, a highly reactive aldehyde, causes lung edema. The underlying mechanism is poorly understood and there is no effective treatment. In this study, we demonstrated that acrolein not only dose-dependently induced lung edema but also promoted LPS-induced acute lung injury.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
January 2017
Epidemiological studies indicate that cigarette smoking (CS) increases the risk and severity of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). The mechanism is not understood, at least in part because of lack of animal models that reproduce the key features of the CS priming process. In this study, using two strains of mice, we characterized a double-hit mouse model of ALI induced by CS priming of injury caused by lipopolysaccharide (LPS).
View Article and Find Full Text PDFAbundant expression of aspartyl-(asparaginyl)-β-hydroxylase (AAH) correlates with infiltrative growth of hepatocellular carcinoma (HCC). Herein, we examine the role of phosphorylation in relation to AAH's protein expression, hydroxylase activity, promotion of cell motility, and activation of Notch signaling in human Huh7 hepatoma cells. Predicted glycogen synthase kinase-3β (GSK-3β), protein kinase A (PKA), protein kinase C (PKC), and casein kinase 2 (CK2) phosphorylation sites encoded by human AAH cDNA were ablated by S/T→A site-directed mutagenesis using N-Myc-tagged constructs in which gene expression was controlled by a cytomegalovirus promoter.
View Article and Find Full Text PDFEpidemiologic evidence indicates that cigarette smoke (CS) is associated with the development of acute lung injury (ALI). We have previously shown that brief CS exposure exacerbates lipopolysaccharide (LPS)-induced ALI in vivo and endothelial barrier dysfunction in vitro. In this study, we found that CS also exacerbated Pseudomonas-induced ALI in mice.
View Article and Find Full Text PDFBackground: Asparaginyl-β-hydroxylase (AAH) promotes cell adhesion, migration, and invasion via Notch activation. AAH's expression is up-regulated by insulin/IGF signaling through PI3K-Akt, but its protein is independently regulated by GSK-3β. The multiple predicted GSK-3β phosphorylation sites suggest post-translational mechanisms may regulate AAH protein expression.
View Article and Find Full Text PDFBackground: Abundant aspartyl-asparaginyl-β-hydroxylase (ASPH) expression supports robust neuronal migration during development, and reduced ASPH expression and function, as occur in fetal alcohol spectrum disorder, impair cerebellar neuron migration. ASPH mediates its effects on cell migration via hydroxylation-dependent activation of Notch signaling networks. Insulin and Insulin-like growth factor (IGF-1) stimulate ASPH mRNA transcription and enhance ASPH protein expression by inhibiting Glycogen Synthase Kinase-3β (GSK-3β).
View Article and Find Full Text PDF