Publications by authors named "Diana Blaney"

Article Synopsis
  • - The Mapping Imaging Spectrometer for Europa (MISE) is an infrared instrument on NASA's Europa Clipper mission, aimed at understanding the composition and habitability of Europa's ocean and its icy surface.
  • - MISE will capture data from 0.8 to 5 μm with high spatial (25 m per pixel) and spectral resolution, helping identify critical components such as water ice, salts, acids, and organics on Europa's surface.
  • - This instrument, along with other Europa Clipper payloads, will enhance our knowledge of Europa's geological processes and surface structure, as detailed in the accompanying paper describing MISE's science goals, design, operations, and expected data products.
View Article and Find Full Text PDF

Future astrobiological missions to Mars are likely to emphasize the use of rovers with in situ petrologic capabilities for selecting the best samples at a site for in situ analysis with onboard lab instruments or for caching for potential return to Earth. Such observations are central to an understanding of the potential for past habitable conditions at a site and for identifying samples most likely to harbor fossil biosignatures. The Multispectral Microscopic Imager (MMI) provides multispectral reflectance images of geological samples at the microscale, where each image pixel is composed of a visible/shortwave infrared spectrum ranging from 0.

View Article and Find Full Text PDF

Stable isotope ratios of H, C, and O are powerful indicators of a wide variety of planetary geophysical processes, and for Mars they reveal the record of loss of its atmosphere and subsequent interactions with its surface such as carbonate formation. We report in situ measurements of the isotopic ratios of D/H and (18)O/(16)O in water and (13)C/(12)C, (18)O/(16)O, (17)O/(16)O, and (13)C(18)O/(12)C(16)O in carbon dioxide, made in the martian atmosphere at Gale Crater from the Curiosity rover using the Sample Analysis at Mars (SAM)'s tunable laser spectrometer (TLS). Comparison between our measurements in the modern atmosphere and those of martian meteorites such as ALH 84001 implies that the martian reservoirs of CO2 and H2O were largely established ~4 billion years ago, but that atmospheric loss or surface interaction may be still ongoing.

View Article and Find Full Text PDF

We have collected reflectance spectra of various unprocessed rock samples in the 450-1,650 nm wavelength range with a spatial resolution of 60 and 120 microm (diameter) and using three illumination modes. Spectra taken in diffuse reflectance (dark field) mode are comparable to those obtained from macroscopic measurements and can provide the basis for mineral detection at that spatial scale. The spectral discrimination of the dark field mode is demonstrated to be consistent with the spatial resolution of the microscope for the samples examined.

View Article and Find Full Text PDF

The Urey organic and oxidant detector consists of a suite of instruments designed to search for several classes of organic molecules in the martian regolith and ascertain whether these compounds were produced by biotic or abiotic processes using chirality measurements. These experiments will also determine the chemical stability of organic molecules within the host regolith based on the presence and chemical reactivity of surface and atmospheric oxidants. Urey has been selected for the Pasteur payload on the European Space Agency's (ESA's) upcoming 2013 ExoMars rover mission.

View Article and Find Full Text PDF

Gusev crater was selected as the landing site for the Spirit rover because of the possibility that it once held a lake. Thus one of the rover's tasks was to search for evidence of lake sediments. However, the plains at the landing site were found to be covered by a regolith composed of olivine-rich basaltic rock and windblown 'global' dust.

View Article and Find Full Text PDF

The mineralogical and elemental compositions of the martian soil are indicators of chemical and physical weathering processes. Using data from the Mars Exploration Rovers, we show that bright dust deposits on opposite sides of the planet are part of a global unit and not dominated by the composition of local rocks. Dark soil deposits at both sites have similar basaltic mineralogies, and could reflect either a global component or the general similarity in the compositions of the rocks from which they were derived.

View Article and Find Full Text PDF