Publications by authors named "Diana B Ritz"

In cell culture process development, we rely largely on an iterative, one-factor-at-a-time procedure based on experiments that explore a limited process space. Design of experiments (DoE) addresses this issue by allowing us to analyze the effects of process inputs on process responses systematically and efficiently. However, DoE cannot be applied directly to study time-varying process inputs unless an impractically large number of bioreactors is used.

View Article and Find Full Text PDF

The application of process analytical technology (PAT) for biotherapeutic development and manufacturing has been employed owing to technological, economic, and regulatory advantages across the industry. Typically, chromatographic, spectroscopic, and/or mass spectrometric sensors are integrated into upstream and downstream unit operations in in-line, on-line, or at-line fashion to enable real-time monitoring and control of the process. Despite the widespread utility of PAT technologies at various unit operations of the bioprocess, a holistic business value assessment of PAT has not been well addressed in biologics.

View Article and Find Full Text PDF

A key aspect of large-scale production of biotherapeutics is a well-designed and consistently-executed upstream cell culture process. Process analytical technology tools provide enhanced monitoring and control capabilities to support consistent process execution, and also have potential to aid in maintenance of product quality at desired levels. One such tool, Raman spectroscopy, has matured as a useful technique to achieve real-time monitoring and control of key cell culture process attributes.

View Article and Find Full Text PDF