Based on a single-beam injection distributed feedback semiconductor laser (DFB-SL) combining with optical heterodyne, a photonic scheme for generating dual-linear chirp microwave (dual-LCM) signal with identical or complementary chirp is proposed and experimentally demonstrated. For such a scheme, a continuous-wave (CW) light with a frequency of finj is split into two parts. One part is passing through a Mach-Zehnder modulator (MZM) driven by a modified sawtooth signal, and then its intensity varies with time as a sawtooth wave.
View Article and Find Full Text PDFFrequency-modulated continuous-wave (FMCW) can be acquired by using a distributed feedback semiconductor laser (DFB-SL) operating at period-one (P1) oscillation under an optical injection modulated by a Mach-Zehnder modulator (MZM). In this work, through introducing another MZM to establish cascade-modulated optical injection, an improved photonic scheme for generating high-quality FMCW is proposed and experimentally demonstrated. The experimental results indicate that, under appropriate injection parameters, the central frequency of the generated FMCW is widely tunable, and the bandwidth is larger than that obtained under a single MZM modulation.
View Article and Find Full Text PDF