Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor that is characterized by its high proliferative and migratory potential, leading to a high invasiveness of this tumor type. However, the underlying mechanism of GBM proliferation and migration has not been fully elucidated. In this study, at first, we used RNA-seq together with bioinformatics technology to screen for C-X-C motif ligand 1 (CXCL1) as a proliferation-related gene.
View Article and Find Full Text PDFParkinson's disease (PD) is a neurodegenerative disease characterized by selective loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). We recently reported that Six2 could reverse the degeneration of DA neurons in a dephosphorylation state. Here we further identified that Eya1 was the phosphatase of Six2 that could dephosphorylate the tyrosine 129 (Y129) site by forming a complex with Six2 in damaged DA cells.
View Article and Find Full Text PDFPrevious studies have found that deficiency in nuclear receptor-related factor 1 (Nurr1), which participates in the development, differentiation, survival, and degeneration of dopaminergic neurons, is associated with Parkinson's disease, but the mechanism of action is perplexing. Here, we first ascertained the repercussion of knocking down Nurr1 by performing liquid chromatography coupled with tandem mass spectrometry. We found that 231 genes were highly expressed in dopaminergic neurons with Nurr1 deficiency, 14 of which were linked to the Parkinson's disease pathway based on Kyoto Encyclopedia of Genes and Genomes analysis.
View Article and Find Full Text PDFObjective: Evidence shows that the impairment of executive function (EF) is mainly attributed to the degeneration of frontal-striatal dopamine pathway. Glial cell line-derived neurotrophic factor (GDNF), as the strongest protective neurotrophic factor for dopaminergic neurons (DANs), may play a role in EF to some extent. This study mainly explored the correlation between serum GDNF concentration and EF performance in Parkinson's disease (PD).
View Article and Find Full Text PDFStudies have found that the absence of glial cell line-derived neurotrophic factor may be the primary risk factor for Parkinson's disease. However, there have not been any studies conducted on the potential relationship between glial cell line-derived neurotrophic factor and cognitive performance in Parkinson's disease. We first performed a retrospective case-control study at the Affiliated Hospital of Xuzhou Medical University between September 2018 and January 2020 and found that a decreased serum level of glial cell line-derived neurotrophic factor was a risk factor for cognitive disorders in patients with Parkinson's disease.
View Article and Find Full Text PDFMalignant glioma, especially glioblastoma (GBM), has historically been associated with a low survival rate. The hyperactivation of STAT3 played a key role in GBM initiation and resistance to therapy; thus, there is an urgent requirement for novel STAT3 inhibitors. BP-1-102 was recently reported as a biochemical inhibitor of STAT3, but its roles and mechanism in biological behavior of glioma cells were still unclear.
View Article and Find Full Text PDFConstipation is a significant symptom of Parkinson's disease (PD). Glial-derived neurotrophic factor (GDNF) is important for the morphogenesis of the enteric nervous system and plays a critical role in the preservation of mucosal integrity under enteric glia surveillance. The aim of this work was to evaluate the serum levels of GDNF in patients with PD with and without constipation.
View Article and Find Full Text PDFObjective: To investigate the association between gender and gastrointestinal (GI) dysfunctions, as well as gender and other motor symptoms/nonmotor symptoms, in a sample of PD patients.
Methods: 186 patients with PD were recruited into this study and divided into male PD group (M-PD) and female PD group (FM-PD). Demographic and PD-related clinical information of the participants were collected by the same neurologist.
Constipation is one of the most frequent non-motor symptoms (NMS) in Parkinson's disease (PD), causing great disturbance to patients. The present study investigated the prevalence and the clinical features of constipation in patients with PD and explored the difference between prodromal and clinical constipation of PD. A total of 186 patients with PD were recruited into this study.
View Article and Find Full Text PDFAbnormally high expression of glial cell line-derived neurotrophic factor (GDNF) derived from glioma cells has essential impacts on gliomagenesis and development, but the molecular basis underlying increased GDNF expression in glioma cells remain unclear. This work aimed to study the molecular mechanisms that may explain the accumulation of GDNF in glioma. Firstly, we observed that cAMP response element-binding protein (CREB), known as an important transcription factor for binding of GDNF promoter region, was highly expressed with an apparent accumulation into the nucleus of glioma cells, which may contribute to the transcription of GDNF.
View Article and Find Full Text PDFInjured neurons can initiate their own neurotoxin-induced repair mechanisms by expressing protective genes and activating specific intracellular signal transduction pathways. Although glial cell-derived neurotrophic factor (GDNF) plays a key role in the repair of dopaminergic (DA) neurons, whether there is high expression of GDNF in DA neurons at an early stage of injury has not yet been reported. In this study, neurotoxin-induced GDNF overexpression was detected for the first time in MES23.
View Article and Find Full Text PDFGlial cell line-derived neurotrophic factor (GDNF) plays a critical role in neuronal survival and function. GDNF has two major splice variants in the brain, α-pro-GDNF and β-pro-GDNF, and both isoforms have strong neuroprotective effects on dopamine neurons. However, the expression of the GDNF splice variants in dopaminergic neurons in the brain remains unclear.
View Article and Find Full Text PDFGlioma stem cells (GSC) were important for Glioblastoma (GBM) initiation and chemotherapy resistance. Centrosomal protein of 55 kDa (CEP55) was a biomarker for multiple cancers. However, roles and mechanism of CEP55 in glioma tumorigenesis and stemness maintains of stem like cells was still unclear.
View Article and Find Full Text PDFGliomas are the most common malignant tumors of the brain and are characteristic of severe migration and invasion. Glial cell line-derived neurotrophic factor (GDNF) promotes glioma development process. However, the regulatory mechanisms of promoting occurrence and development of glioma have not yet been clearly elucidated.
View Article and Find Full Text PDFA correction has been published and is appended to both the HTML and PDF versions of this paper. The error has not been fixed in the paper.
View Article and Find Full Text PDFMalignant astrocytoma (MA) is the most common and severe type of brain tumor. A greater understanding of the underlying mechanisms responsible for the development of MA would be beneficial for the development of targeted molecular therapies. In the present study, the upregulated differentially expressed genes (DEGs) in MA were obtained from the Gene Expression Omnibus database using R/Bioconductor software.
View Article and Find Full Text PDFDecrease of chloride concentration contributes to cardiovascular diseases, however, whether decrease of chloride concentration is involved in platelet activation remains elusive. In the present study, we found that ACI patients had lower serum chloride which would be rescued after Aspirin administration. ADP induced chloride concentration reduction in platelets.
View Article and Find Full Text PDFGlial cell line-derived neurotrophic factor (GDNF) is a potent survival factor, and a member of the transforming growth factor β (TGF-β) superfamily acting on different neuronal activities. GDNF was originally identified as a neurotrophic factor crucially involved in the survival of dopaminergic neurons of the nigrostriatal pathway and is currently an established therapeutic target in Parkinson's disease. However, GDNF was later reported to be highly expressed in gliomas, especially in glioblastomas, and was demonstrated as a potent proliferation factor involved in the development and migration of gliomas.
View Article and Find Full Text PDFGlial cell line-derived neurotrophic factor (GDNF) is considered to be involved in the development of glioma. However, uncovering the underlying mechanism of the proliferation of glioma cells is a challenging work in progress. We have identified the binding of the precursor of N-cadherin (proN-cadherin) and GDNF on the cell membrane in previous studies.
View Article and Find Full Text PDFCell Physiol Biochem
March 2018
Background/aims: Glial cell line-derived neurotrophic factor (GDNF) is an important factor promoting invasive glioma growth. This study was performed to reveal a unique mechanism of glioma cell proliferation and migration.
Methods: Human U251 glioma cells were used to screen the optimal GDNF concentration and treatment time to stimulate proliferation and migration.
The aim of this study was to identify the receptor for glial cell line-derived neurotrophic factor (GDNF) in glioblastoma multiforme (GBM). After GST pull-down assays, membrane proteins purified from C6 rat glioma cells were subjected to liquid chromatography-tandem mass spectrometry (LC-MS/MS). The differentially expressed proteins were annotated using Gene Ontology, and neuropilin-1 (NRP1) was identified as the putative GDNF receptor in glioma.
View Article and Find Full Text PDFPitx3 is strongly associated with the phenotype, differentiation, and survival of dopaminergic neurons. The relationship between Pitx3 and glial cell line-derived neurotrophic factor (GDNF) in dopaminergic neurons remains poorly understood. The present investigation sought to construct and screen a lentivirus expression plasmid carrying a rat Pitx3 short hairpin (sh)RNA and to assess the impact of gene knockdown on GDNF transcriptional activity in MES23.
View Article and Find Full Text PDFObjective: Induction of dopaminergic (DA) differentiation is a cell-based therapy for Parkinson's disease (PD). Here, we explore the key factors of DA differentiation with a focus on glucose-6-phosphatase (G6Pase), a marker enzyme for the endoplasmic reticulum (ER) associated with cell differentiation.
Methods: We cultured SH-SY5Y human neuroblastoma cells, a model system for PD research, and added glial cell-derived neurotrophic factor (GDNF; 25, 50, or 100 ng/ml) to stimulate differentiation.