Publications by authors named "Dian-sheng Xu"

Herein, we report a double enzyme system to degrade 12 phthalate esters (PAEs), particularly bulky PAEs, such as the widely used bis(2-ethylhexyl) phthalate (DEHP), in a one-pot cascade process. A PAE-degrading bacterium, sp. strain 5F, was isolated from soil polluted with plastic waste.

View Article and Find Full Text PDF

The biodegradation of pesticides by organophosphorus hydrolases (OPHs) requires an efficient enzyme production technology in industry. Herein, a Pichia pastoris strain was constructed for the extracellular expression of PoOPH, an engineered malathion-degrading enzyme. After optimization, the maximum titer and yield of fermentation reached 50.

View Article and Find Full Text PDF

Soybean, maize and rice straws were selected as raw materials to study the response of the soil respiration (SR) and soil organic carbon (SOC) to returning of different straws in the Chongming Dongtan area. The results showed that all of SR, SOC and the plant biomass of the lands with returning of different straws were higher than those of the controls. The soil with soybean straw returning possessed the lowest SR and highest SOC among the three kinds of straws, meaning its higher soil organic carbon sequestration capability than corn and maize straws returning.

View Article and Find Full Text PDF

The seawater samples collected from many different areas with different depth in the South China Sea were cultivated using different electron donors respectively. And the variation in the potential carbon fixation capability ( PCFC ) of non-photosynthetic microbial community (NPMC) in seawater with different depth was determined after a cycle of cultivation through the statistic analysis. In addition, the cause for the variation was clarified through analyzing key gene abundance regarding CO2 fixation and characteristics of seawater with different depth.

View Article and Find Full Text PDF

Isolation and screening from sea water and sediments, and the optimization of electron donor and inorganic carbon source structure were performed for obtaining microbial flora with high efficient inorganic carbon fixation without the light and hydrogen. In addition, the structure of the microbial flora was studied through 16S rDNA sequence analysis and contrast for providing theoretical basis to improve carbon fixation efficiency through optimizing microbial flora structure. The result showed that non-photosynthetic microbial flora with the capacity of inorganic carbon fixation under the general aerobic and anaerobic conditions could be obtained from the sea by long-term domestication and isolation.

View Article and Find Full Text PDF

RhNTA protein is a new thrombolytic agent which has potential medicinal and commercial value. Protein refolding is a bottleneck for large-scale production of valuable proteins expressed as inclusion bodies in Escherichia coli. The denatured rhNTA protein was refolded by an improved size-exclusion chromatography refolding process achieved by combining an increasing arginine gradient and a decreasing urea gradient (two gradients) with a size-exclusion chromatography refolding system.

View Article and Find Full Text PDF