Spaceflight and ground-based microgravity analog experiments have suggested that microgravity can affect microbial growth and metabolism. Although the effects of microgravity and its analogs on microorganisms have been studied for more than 50 years, plausible conflicting and diverse results have frequently been reported in different experiments, especially regarding microbial growth and secondary metabolism. Until now, only the responses of a few typical microbes to microgravity have been investigated; systematic studies of the genetic and phenotypic responses of these microorganisms to microgravity in space are still insufficient due to technological and logistical hurdles.
View Article and Find Full Text PDFObjectives: To investigate the relationship between telomere length in peripheral blood white cells and cardiovascular function in a healthy, aging Han Chinese population.
Methods: In 2012, peripheral blood leukocytes were obtained from 139 healthy individuals in Beijing, China, and telomere restriction fragment (TRF) length was assayed using a digoxigenin-labeled hybridization probe in Southern blot assays. Indicators of cardiovascular function were also evaluated, including electrocardiograms (ECG), (RR, P, PR, QRS, ST and T intervals); blood pressure (BP), (SBP, DBP, PP, PPI); cardiovascular ultrasound (left ventricular ejection fraction, LVEF); mitral early and late diastolic peak flow velocity (MVE and MVA); and lipid indices (TC, TG, HDL, LDL, LCI).