Introduction: Clustering of cardiometabolic risk factors in childhood significantly increases the risk of atherosclerotic cardiovascular disease later in life. Identification of modifiable parental factors that contribute to offspring cardiometabolic health is critical for the prevention of disease. The objective was to identify factors associated with child cardiometabolic risk factors at age 5 years.
View Article and Find Full Text PDFCarbon-based nanomaterials (CBNs) were previously described as regulators of plant cell division. Here, we demonstrated the ability of multi-walled carbon nanotubes (MWCNT) and graphene to enhance biomass production in callus culture of the medicinal plant Catharanthus roseus cultivated in dark conditions. Furthermore, both tested CBNs were able to stimulate biosynthesis of total produced alkaloids in CBN-exposed callus culture of Catharanthus.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2017
Here, we reported that multiwalled carbon nanotubes (MWCNT) added to hydroponics system can enhance fruit production of exposed tomato plants. We quantified the exact amount of MWCNT accumulated inside of fruits collected by MWCNT-exposed plants using an advanced microwave induced heating technique (MIH). We found that absorption of MWCNT by tomato fruits significantly affected total fruit metabolome as was confirmed by LC-MS.
View Article and Find Full Text PDF