Publications by authors named "Diamantidis Grigorios"

The role of environment in fruit physiology has been established; however, knowledge regarding the effect of altitude in fruit quality traits is still lacking. Here, skin tissue quality characters were analyzed in peach fruit (cv. June Gold), harvested in 16 orchards located in low (71.

View Article and Find Full Text PDF

Unlabelled: Fruit development and ripening depends on highly coordinated phyto-hormonal activities. Although the role of synthetic cytokinin N-(2-chloro-4-pyridyl)-N'-phenylurea (CPPU) in promoting fruit growth has been established, knowledge regarding the underlying mechanism is still lacking. Here, we characterize the effect of CPPU application 20d after full bloom at pre- and post-harvest biology of kiwifruit (Actinidia deliciosa [A.

View Article and Find Full Text PDF

Emerging evidence suggests that the gaseous molecules hydrogen sulfide (H2S) and nitric oxide (NO) enhances plant acclimation to stress; however, the underlying mechanism remains unclear. In this work, we explored if pretreatment of citrus roots with NaHS (a H2S donor) or sodium nitroprusside (SNP, a NO donor) for 2 days (d) could elicit long-lasting priming effects to subsequent exposure to PEG-associated drought stress for 21 d following a 5 d acclimation period. Detailed physiological study documented that both pretreatments primed plants against drought stress.

View Article and Find Full Text PDF

Nitrosative status has emerged as a key component in plant response to abiotic stress; however, knowledge on its regulation by different environmental conditions remains unclear. The current study focused on nitrosative responses in citrus plants exposed to various abiotic stresses, including continuous light, continuous dark, heat, cold, drought and salinity. Morphological observations and physiological analysis showed that abiotic stress treatments were sensed by citrus plants.

View Article and Find Full Text PDF

Reactive oxygen and nitrogen species are involved in a plethora of cellular responses in plants; however, our knowledge on the outcomes of oxidative and nitrosative signaling is still unclear. To better understand how oxidative and nitrosative signals are integrated to regulate cellular adjustments to external conditions, local and systemic responses were investigated in the roots and leaves of sour orange plants (Citrus aurantium L.) after root treatment with hydrogen peroxide (H(2) O(2) ) or sodium nitroprusside (a nitric oxide donor), followed by NaCl stress for 8 days.

View Article and Find Full Text PDF

Hydrogen peroxide (H(2)O(2)) and nitric oxide ((•)NO) elicit numerous processes in plants. However, our knowledge of H(2)O(2) and (•)NO-responsive proteins is limited. The present study aimed to identify proteins whose accumulation levels were regulated by these signaling molecules in citrus leaves.

View Article and Find Full Text PDF

Nitric oxide (NO) is now recognized as an important signaling molecule and there has been an increasing bulk of studies regarding the various functions of NO in plants exposed to environmental stimulus. There is also emerging evidence, although not extensive, that NO plays systemic signaling roles during the establishment of salt tolerance in many plant species. In this mini-review, we highlight several candidate mechanisms as being functional in this NO systemic signaling action.

View Article and Find Full Text PDF

Hydrogen peroxide (H(2)O(2)) and nitric oxide (*NO) are key reactive species in signal transduction pathways leading to activation of plant defense against biotic or abiotic stress. Here, we investigated the effect of pre-treating citrus plants (Citrus aurantium L.) with either of these two molecules on plant acclimation to salinity and show that both pre-treatments strongly reduced the detrimental phenotypical and physiological effects accompanying this stress.

View Article and Find Full Text PDF

We tested whether pre-treatments of roots with H(2)O(2) (10mM for 8h) or sodium nitroprusside (SNP; 100microM for 48h), a donor of ()NO, could induce prime antioxidant defense responses in the leaves of citrus plants grown in the absence or presence of 150mM NaCl for 16d. Both root pre-treatments increased leaf superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) activities, and induced related-isoform(s) expression under non-NaCl-stress conditions. When followed by salinity, certain enzymatic activities also exhibited an up-regulation in response to H(2)O(2) or SNP pre-exposure.

View Article and Find Full Text PDF

Fe deficiency was imposed by omission of Fe (-Fe), or by inclusion of bicarbonate (supplied as 20 mM NaHCO3) in the nutrient solution in two contrasting peach rootstocks (GF-677; tolerant to Fe deficiency and Cadaman; sensitive to Fe deficiency) for 4 months. In the Fe-deprived leaves and roots, and especially in those treated with bicarbonate, a decrease in Fe concentrations was recorded. Omission of Fe resulted in an increase of the activity of root Fe(III)-chelate reductase (FCR) in both rootstocks, whereas FCR activity decreased in the bicarbonate-treated roots of Cadaman.

View Article and Find Full Text PDF