Targeted gene or drug delivery aims to locally accumulate the active agent and achieve the maximum local therapeutic effect at the target site while reducing unwanted effects at nontarget sites. A further development of the magnetic drug-targeting concept is combining it with an ultrasound-triggered delivery using magnetic microbubbles as a carrier for gene or drug delivery. For this purpose, selected magnetic nanoparticles (MNPs), phospholipids, and nucleic acid are assembled in the presence of perfluorocarbon gas into flexible formulations of magnetic lipospheres or microbubbles.
View Article and Find Full Text PDFThis chapter describes how to design and conduct experiments to deliver siRNA to adherent cell cultures in vitro by magnetic force-assisted transfection using self-assembled complexes of small interfering RNA (siRNA) and cationic lipids or polymers that are associated with magnetic nanoparticles (MNPs). These magnetic complexes are targeted to the cell surface by the application of a gradient magnetic field. A further development of the magnetic drug-targeting concept is combining it with an ultrasound-triggered delivery using magnetic microbubbles as a carrier for gene or drug delivery.
View Article and Find Full Text PDFTargeted gene or drug delivery aims to locally accumulate the active agent and achieve the maximum local therapeutic effect at the target-site while reducing unwanted effects at nontarget sites. A further development of the magnetic drug-targeting concept is combining it with an ultrasound-triggered delivery using magnetic microbubbles as a carrier for gene or drug delivery. For this purpose, selected magnetic nanoparticles (MNPs), phospholipids, and nucleic acid are assembled in the presence of perfluorocarbon gas into flexible formulations of magnetic lipospheres or microbubbles.
View Article and Find Full Text PDFNucleic acid delivery to cells to make them produce a desired protein or to shut down the expression of endogenous genes opens unique possibilities for research and therapy. During the last decade, to realize the potential of this approach, nanomagnetic methods for delivering and targeting nucleic acids have been developed, methods which are often referred to as Magnetofection. Our research group at the Institute of Experimental Oncology and Therapy Research, located at the University Hospital Klinikum rechts der Isar in the center of Munich, Germany, develops new magnetic nanomaterials and, their formulations with gene-delivery vectors and technologies to allow localized and efficient gene delivery in vitro and in vivo for a variety of research, diagnostic and therapeutic applications.
View Article and Find Full Text PDFLipospheres made from soy bean oil and a combination of the cationic lipid Metafectene and the helper lipid dioleoylphosphatidyl-ethanolamine were functionalized with magnetic nanoparticles (NPs) and small interfering RNA (siRNA). The resulting magnetic lipospheres loaded with siRNA are proven here as efficient nonviral vectors for gene silencing. Embedding magnetic NPs in the shell of lipospheres allows for magnetic force-assisted transfection (magnetofection) as well as magnetic targeting in both static and fluidic conditions mimicking the bloodstream.
View Article and Find Full Text PDF