This study is aimed at the analysis of the pyrolysis kinetics of Nanche stone BSC ( as an agro-industrial waste using non-isothermal thermogravimetric experiments by determination of triplet kinetics; apparent activation energy, pre-exponential factor, and reaction model, as well as thermodynamic parameters to gather the required fundamental information for the design, construction, and operation of a pilot-scale reactor for the pyrolysis this lignocellulosic residue. Results indicate a biomass of low moisture and ash content and a high volatile matter content (≥70%), making BCS a potential candidate for obtaining various bioenergy products. Average apparent activation energies obtained from different methods (KAS, FWO and SK) were consistent in value (~123.
View Article and Find Full Text PDFThis study focused on the analysis of the pyrolytic behavior of four lignocellulosic biomasses: avocado stone (AS), Agave salmiana bagasse (AB), cocoa shell (CS), and α-cellulose (CEL). According to the triplet kinetics analysis, the order of pyrolytic decomposition was AS < AB < CEL < CS. The AS was dominated by a second-order reaction, while AB followed a 2D diffusion-Valensi model.
View Article and Find Full Text PDF