T-box transcription factors T-bet (Tbx21) and Eomesodermin (Eomes) are critical players in CD8(+) cytotoxic T lymphocyte effector function and differentiation, but how the expression of these transcription factors is regulated remains poorly defined. Here we show that dominant T cells directed toward human CMV, expressing significantly higher levels of T-bet with graded loss of Eomes expression (T-bet(hi)Eomes(hi/lo)), are more efficient in recognizing endogenously processed peptide-major histocompatibility complexes (pMHC) compared with subdominant virus-specific T cells expressing lower levels of T-bet and high levels of Eomes (T-bet(int)Eomes(hi)). Paradoxically, the T-bet(hi)Eomes(hi/lo) dominant populations that efficiently recognized endogenous antigen demonstrated lower intrinsic avidity for pMHC, whereas T-bet(int)Eomes(hi) subdominant populations were characterized by higher pMHC avidity and less efficient recognition of virus-infected cells.
View Article and Find Full Text PDFThousands of potentially antigenic peptides are encoded by an infecting pathogen; however, only a small proportion induce measurable CD8(+) T cell responses. To investigate the factors that control peptide immunogenicity, we have examined the cytotoxic T lymphocyte (CTL) response to a previously undefined epitope ((77)APQPAPENAY(86)) from the BZLF1 protein of Epstein-Barr virus (EBV). This peptide binds well to two human histocompatibility leukocyte antigen (HLA) allotypes, HLA-B*3501 and HLA-B*3508, which differ by a single amino acid at position 156 ((156)Leucine vs.
View Article and Find Full Text PDFMHC class I molecules generally present peptides of 8-10 aa long, forming an extended coil in the HLA cleft. Although longer peptides can also bind to class I molecules, they tend to bulge from the cleft and it is not known whether the TCR repertoire has sufficient plasticity to recognize these determinants during the antiviral CTL response. In this study, we show that unrelated individuals infected with EBV generate a significant CTL response directed toward an HLA-B*3501-restricted, 11-mer epitope from the BZLF1 Ag.
View Article and Find Full Text PDFAlthough HLA class I alleles can bind epitopes up to 14 amino acids in length, little is known about the immunogenicity or the responding T-cell repertoire against such determinants. Here, we describe an HLA-B*3508-restricted cytotoxic T lymphocyte response to a 13-mer viral epitope (LPEPLPQGQLTAY). The rigid, centrally bulged epitope generated a biased T-cell response.
View Article and Find Full Text PDF