Background: Neoadjuvant chemotherapy, particularly the use of platinum-based compounds and taxanes, is pivotal in the treatment of epithelial-derived tumors, such as cervical cancer and esophageal squamous cell carcinoma (ESCC); however, resistance remains a significant challenge. Utilizing Mendelian randomization (MR) with pharmacogenomics offers a novel approach to understanding the genetic underpinnings of drug responses, thereby aiding in personalized treatment.
Methods: Single-cell RNA sequencing (scRNA-seq) analysis revealed a shared cellular subpopulation of CD8 + T effector memory (CD8 + TEM) cells that are pivotal in mediating chemotherapy resistance in ESCC and cervical cancer.
Metabolic reprogramming is an essential hallmark of tumors, and metabolic abnormalities are strongly associated with the malignant phenotype of tumor cells. This is closely related to transcriptional dysregulation. Super-enhancers are extremely active cis-regulatory regions in the genome, and can amalgamate a complex set of transcriptional regulatory components that are crucial for establishing tumor cell identity, promoting tumorigenesis, and enhancing aggressiveness.
View Article and Find Full Text PDFEsophageal cancer, known for its high incidence and low five-year survival rate, poses significant treatment challenges. A key aspect of this challenge is the close link between mitochondria and resistance to chemoradiotherapy (CRT). Currently, there is a scarcity of biomarkers for predicting CRT response and prognosis in esophageal cancer.
View Article and Find Full Text PDFThe tumor microenvironment (TME) is an intricate ecosystem that is actively involved in various stages of cancer occurrence and development. Some characteristics of tumor biological behavior, such as proliferation, migration, invasion, inhibition of apoptosis, immune escape, angiogenesis, and metabolic reprogramming, are affected by TME. Studies have shown that non-coding RNAs, especially long-chain non-coding RNAs and microRNAs in cancer-derived exosomes, facilitate intercellular communication as a mechanism for regulating angiogenesis.
View Article and Find Full Text PDFTumor metastasis is an important factor that contributes to the poor prognosis of patients with tumors. Therefore, to solve this problem, research on the mechanism of metastasis is essential. Ferroptosis, a new mode of cell death, is characterized by membrane damage due to lipid peroxidation caused by iron overload.
View Article and Find Full Text PDF