Bacteria harbor diverse mechanisms to defend themselves against their viral predators, bacteriophages. In response, phages can evolve counter-defense systems, most of which are poorly understood. In T4-like phages, the gene tifA prevents bacterial defense by the type III toxin-antitoxin (TA) system toxIN, but the mechanism by which TifA inhibits ToxIN remains unclear.
View Article and Find Full Text PDFThe evolution of novel functions in biology relies heavily on gene duplication and divergence, creating large paralogous protein families. Selective pressure to avoid detrimental cross-talk often results in paralogs that exhibit exquisite specificity for their interaction partners. But how robust or sensitive is this specificity to mutation? Here, using deep mutational scanning, we demonstrate that a paralogous family of bacterial signaling proteins exhibits marginal specificity, such that many individual substitutions give rise to substantial cross-talk between normally insulated pathways.
View Article and Find Full Text PDF