Background: Ex vivo perfusion of transplant-declined human organs has emerged as a promising platform to study the response of an organ to novel therapeutic strategies. However, to fully realize the capability of this platform for performing translational research in human organ pathophysiology, there is a need for robust assays to assess organ function and disease. State-of-the-art research methods rely on analyses of biopsies taken during perfusion, which both damages the organ and only provides localized information.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
November 2023
The liver lymphatic system is essential for maintaining tissue fluid balance and immune function. The detailed structure of lymphatic vessels (LVs) in the liver remains to be fully demonstrated. The aim of this study is to reveal LV structures in normal and diseased livers by developing a tissue-clearing and coimmunolabeling protocol optimized for the tissue size and the processing time for three-dimensional (3-D) visualization and quantification of LVs in the liver.
View Article and Find Full Text PDFFor decades, transplantation has been a life-saving treatment for those fortunate enough to gain access. Nevertheless, many patients die waiting for an organ and countless more never make it onto the waitlist because of a shortage of donor organs. Concurrently, thousands of donated organs are declined for transplant each year because of concerns about poor outcomes post-transplant.
View Article and Find Full Text PDFVascular endothelial cells (ECs) play a central role in the pathophysiology of many diseases. The use of targeted nanoparticles (NPs) to deliver therapeutics to ECs could dramatically improve efficacy by providing elevated and sustained intracellular drug levels. However, achieving sufficient levels of NP targeting in human settings remains elusive.
View Article and Find Full Text PDFThe current obesity epidemic has caused a significant decline in the health of our donor population. Organs from obese deceased donors are more prone to ischemia reperfusion injury resulting from organ preservation. As a consequence, these donors are more likely to be discarded under the assumption that nothing can be done to make them viable for transplant.
View Article and Find Full Text PDFBackground: Advances in Molecular Therapy have made gene editing through systemic or topical administration of reagents a feasible strategy to treat genetic diseases in a rational manner. Encapsulation of therapeutic agents in nanoparticles can improve intracellular delivery of therapeutic agents, provided that the nanoparticles are efficiently taken up within the target cells. In prior work we had established proof-of-principle that nanoparticles carrying gene editing reagents can mediate site-specific gene editing in fetal and adult animals in vivo that results in functional disease improvement in rodent models of β-thalassemia and cystic fibrosis.
View Article and Find Full Text PDFIn preclinical research, histological analysis of tissue samples is often limited to qualitative or semiquantitative scoring assessments. The reliability of this analysis can be impaired by the subjectivity of these approaches, even when read by experienced pathologists. Furthermore, the laborious nature of manual image assessments often leads to the analysis being restricted to a relatively small number of images that may not accurately represent the whole sample.
View Article and Find Full Text PDFThousands of kidneys from higher-risk donors are discarded annually because of the increased likelihood of complications posttransplant. Given the severe organ shortage, there is a critical need to improve utilization of these organs. To this end, normothermic machine perfusion (NMP) has emerged as a platform for ex vivo assessment and potential repair of marginal organs.
View Article and Find Full Text PDFDegradable poly(amine-co-ester) (PACE) terpolymers hold tremendous promise for siRNA delivery because these materials can be formulated into delivery vehicles with highly efficient siRNA encapsulation, providing effective knockdown with low toxicity. Here, we demonstrate that PACE nanoparticles (NPs) provide substantial protein knockdown in human embryonic kidney cells (HEK293) and hard-to-transfect primary human umbilical vein endothelial cells (HUVECs). After intravenous administration, NPs of solid PACE (sPACE)-synthesized with high monomer content of a hydrophobic lactone-accumulated in the liver and, to a lesser extent, in other tissues.
View Article and Find Full Text PDFNormothermic machine perfusion (NMP) is a technique that utilizes extracorporeal membrane oxygenation to recondition and repair kidneys at near body temperature prior to transplantation. The application of this new technology has been fueled by a significant increase in the use of the kidneys that were donated after cardiac death, which are more susceptible to ischemic injury. Preliminary results indicate that NMP itself may be able to repair marginal organs prior to transplantation.
View Article and Find Full Text PDFThe U.S. Navy uses the Harshaw 8840/8841 dosimetric (DT-702/PD) system, which employs LiF:Mg,Cu,P thermoluminescent dosimeters (TLDs), developed and produced by Thermo Fisher Scientific (TFS).
View Article and Find Full Text PDFEx vivo normothermic machine perfusion (NMP) is a new clinical strategy to assess and resuscitate organs likely to be declined for transplantation, thereby increasing the number of viable organs available. Short periods of NMP provide a window of opportunity to deliver therapeutics directly to the organ and, in particular, to the vascular endothelial cells (ECs) that constitute the first point of contact with the recipient's immune system. ECs are the primary targets of both ischemia-reperfusion injury and damage from preformed antidonor antibodies, and reduction of perioperative EC injury could have long-term benefits by reducing the intensity of the host's alloimmune response.
View Article and Find Full Text PDFNanoparticles (NPs) are potential drug delivery vehicles for treatment of a broad range of diseases. Intravenous (IV) administration, the most common form of delivery, is relatively non-invasive and provides (in theory) access throughout the circulatory system. However, in practice, many IV injected NPs are quickly eliminated by specialized phagocytes in the liver and spleen.
View Article and Find Full Text PDFJ Vasc Surg Venous Lymphat Disord
January 2014