Publications by authors named "DiNapoli J"

Article Synopsis
  • The study focuses on how antibodies are characterized using B cells and highlights the challenges with analyzing plasma cells due to their lack of surface B cell receptors (BCRs).
  • Researchers explored the antibody repertoires from bone marrow and spleen in a mouse model, overcoming technical limitations to include plasma cells in their analysis.
  • Results showed that spleen B cells produced higher affinity antibodies than bone marrow plasma cells, with evidence of shared origins for some antibody clones between the two lymphoid tissues.
View Article and Find Full Text PDF

Human metapneumovirus (hMPV) is a major cause of acute respiratory infections in infants and older adults, for which no vaccines or therapeutics are available. The viral fusion (F) glycoprotein is required for entry and is the primary target of neutralizing antibodies; however, little is known about the humoral immune response generated from natural infection. Here, using prefusion-stabilized F proteins to interrogate memory B cells from two older adults, we obtain over 700 paired non-IgM antibody sequences representing 563 clonotypes, indicative of a highly polyclonal response.

View Article and Find Full Text PDF

The emergence of SARS-CoV-2 variants, especially Beta and Delta, has raised concerns about the reduced protection from previous infection or vaccination based on the original Wuhan-Hu-1 (D614) virus. To identify promising regimens for inducing neutralizing titers towards new variants, we evaluated monovalent and bivalent mRNA vaccines either as primary vaccination or as a booster in nonhuman primates (NHPs). Two mRNA vaccines, D614-based MRT5500 and Beta-based MRT5500β, tested in sequential regimens or as a bivalent combination in naïve NHPs produced modest neutralizing titers to heterologous variants.

View Article and Find Full Text PDF

Recent approval of mRNA vaccines for emergency use against COVID-19 is likely to promote rapid development of mRNA-based vaccines targeting a wide range of infectious diseases. Compared to conventional approaches, this vaccine modality promises comparable potency while substantially accelerating the pace of development and deployment of vaccine doses. Already demonstrated successfully for single antigen vaccines such as for COVID-19, this technology could be optimized for complex multi-antigen vaccines.

View Article and Find Full Text PDF

Seasonal influenza vaccination elicits a diminished adaptive immune response in the elderly, and the mechanisms of immunosenescence are not fully understood. Using Ig-Seq, we found a marked increase with age in the prevalence of cross-reactive (CR) serum antibodies that recognize both the H1N1 (vaccine-H1) and H3N2 (vaccine-H3) components of an egg-produced split influenza vaccine. CR antibodies accounted for 73% ± 18% of the serum vaccine responses in a cohort of elderly donors, 65% ± 15% in late middle-aged donors, and only 13% ± 5% in persons under 35 years of age.

View Article and Find Full Text PDF

Emergency use authorization of COVID vaccines has brought hope to mitigate pandemic of coronavirus disease 2019 (COVID-19). However, there remains a need for additional effective vaccines to meet the global demand and address the potential new viral variants. mRNA technologies offer an expeditious path alternative to traditional vaccine approaches.

View Article and Find Full Text PDF

Human respiratory syncytial virus (RSV) is a major cause of serious respiratory tract infections in infants and the elderly. Recently it was shown that the RSV G glycoprotein mediates attachment to cells using CX3CR1 as a receptor, and that G-specific neutralizing antibodies can be detected using human airway epithelial (HAE) cell cultures. To investigate the contributions of G-specific antibodies to RSV neutralization, we performed HAE neutralization assays on sera from RSV G-immunized mice or RSV-infected infants.

View Article and Find Full Text PDF

We subjected various open reading frames (ORFs) in the genome of respiratory syncytial virus (RSV) to codon pair optimization (CPO) by increasing the content of codon pairs that are overrepresented in the human genome without changing overall codon usage and amino acid sequences. CPO has the potential to increase the expression of the encoded protein(s). Four viruses were made: Max A (with CPO of NS1, NS2, N, P, M, and SH ORFs), Max B (with CPO of G and F), Max L (with CPO of L), and Max FLC (with CPO of all ORFs except M2-1 and M2-2).

View Article and Find Full Text PDF

Seasonal influenza vaccines represent a positive intervention to limit the spread of the virus and protect public health. Yet continual influenza evolution and its ability to evade immunity pose a constant threat. For these reasons, vaccines with improved potency and breadth of protection remain an important need.

View Article and Find Full Text PDF

Since the first identification of the H5N1 Goose/Guangdong lineage in 1996, this highly pathogenic avian influenza virus has spread worldwide, becoming endemic in domestic poultry. Sporadic transmission to humans has raised concerns of a potential pandemic and underscores the need for a broad cross-protective influenza vaccine. Here, we tested our previously described methodology, termed Computationally Optimized Broadly Reactive Antigen (COBRA), to generate a novel hemagglutinin (HA) gene, termed COBRA-2, that was based on H5 HA sequences from 2005 to 2006.

View Article and Find Full Text PDF

The vast majority of people already have preexisting immune responses to influenza viruses from one or more subtypes. However, almost all preclinical studies evaluate new influenza vaccine candidates in immunologically naive animals. Recently, our group demonstrated that priming naive ferrets with broadly reactive H1 COBRA HA-based vaccines boosted preexisting antibodies induced by wild-type H1N1 virus infections.

View Article and Find Full Text PDF

The efficacy of current seasonal influenza vaccines varies greatly, depending on the match to circulating viruses. Although most vaccines elicit strain-specific responses, some present cross-reactive epitopes that elicit antibodies against diverse viruses and remain unchanged and effective for several years. To determine whether combinations of specific H1 hemagglutinin (HA) antigens stimulate immune responses that protect against diverse H1 influenza viruses, we evaluated the antibody responses elicited by HA-ferritin nanoparticles derived from six evolutionarily divergent H1 sequences and two computationally optimized broadly reactive antigen (COBRA) HA antigens.

View Article and Find Full Text PDF

A safe and effective vaccine against RSV remains an important unmet public health need. Intranasally (IN) delivered live-attenuated vaccines represent the most extensively studied approach for immunization of RSV-naïve infants and children, however, achieving an effective balance of attenuation and immunogenicity has proven challenging. Here we report pre-clinical immunogenicity and efficacy data utilizing a live-attenuated vaccine candidate, RGΔM2-2, which was obtained by deleting the M2-2 open reading frame from the genome of the MSA1 clinical isolate.

View Article and Find Full Text PDF

Each influenza season, a set of wild-type viruses, representing one H1N1, one H3N2, and one to two influenza B isolates, are selected for inclusion in the annual seasonal influenza vaccine. In order to develop broadly reactive subtype-specific influenza vaccines, a methodology called computationally optimized broadly reactive antigens (COBRA) was used to design novel hemagglutinin (HA) vaccine immunogens. COBRA technology was effectively used to design HA immunogens that elicited antibodies that neutralized H5N1 and H1N1 isolates.

View Article and Find Full Text PDF

Most preclinical animal studies test influenza vaccines in immunologically naive animal models, even though the results of vaccination may not accurately reflect the effectiveness of vaccine candidates in humans that have preexisting immunity to influenza. In this study, novel, broadly reactive influenza vaccine candidates were assessed in preimmune ferrets. These animals were infected with different H1N1 isolates before being vaccinated or infected with another influenza virus.

View Article and Find Full Text PDF

Recoding viral genomes by numerous synonymous but suboptimal substitutions provides live attenuated vaccine candidates. These vaccine candidates should have a low risk of deattenuation because of the many changes involved. However, their genetic stability under selective pressure is largely unknown.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) is an important human pathogen, and is the most frequent viral cause of severe respiratory disease in infants. In addition, it is increasingly being recognized as an important cause of respiratory disease in the elderly and immunocompromised. Although a passive prophylactic treatment does exist for high-risk neonates and children, the overall disease burden warrants the development of a safe and effective prophylactic vaccine for use in otherwise healthy newborns and children.

View Article and Find Full Text PDF

Objective: The purpose of this study was to describe relationships between structural empowerment, psychological empowerment, and engagement among clinical nurses.

Background: Empowerment and engagement are key drivers of retention and quality in healthcare. Creating an empowering culture and an engaged staff supports initiatives that are essential for positive work environments.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) is the principal cause of bronchiolitis in infants and a significant healthcare problem. The RSV Glycoprotein (G) mediates attachment of the virus to the cell membrane, which facilitates interaction of the RSV Fusion (F) protein with nucleolin, thereby triggering fusion of the viral and cellular membranes. However, a host protein ligand for G has not yet been identified.

View Article and Find Full Text PDF

Human respiratory syncytial virus (RSV) is the most important viral agent of serious pediatric respiratory-tract disease worldwide. A vaccine or generally effective antiviral drug is not yet available. We designed new live attenuated RSV vaccine candidates by codon-pair deoptimization (CPD).

View Article and Find Full Text PDF

The Healthy People 2020 (2012) report has identified that isolation, lack of social services, and a shortage of culturally competent providers serve as barriers to the health of lesbian, gay, bisexual, and transgender (LGBT) individuals who have HIV/AIDS. Self-transcendence theory proposes that individuals who face increased vulnerability or mortality may acquire an increased capacity for self-transcendence and its positive influence on mental health and well-being. The use of technology-enabled social and community support and group interventions through computer mediated self-help (CMSH) with LGBT individuals may help meet mental health needs of this group, and support healthy lifestyle practices.

View Article and Find Full Text PDF

This paper will systematically analyze the concept of resilience using an integrated review of literature. The historical perspective, attributes, antecedents, and consequences of resilience will be reviewed. A theoretical and operational definition will be provided.

View Article and Find Full Text PDF

Herpes simplex virus type 2 (HSV-2) is a sexually transmitted virus that is highly prevalent worldwide, causing a range of symptoms that result in significant healthcare costs and human suffering. ACAM529 is a replication-defective vaccine candidate prepared by growing the previously described dl5-29 on a cell line appropriate for GMP manufacturing. This vaccine, when administered subcutaneously, was previously shown to protect mice from a lethal vaginal HSV-2 challenge and to afford better protection than adjuvanted glycoprotein D (gD) in guinea pigs.

View Article and Find Full Text PDF