Publications by authors named "DiGiovanni J"

Purpose Of Review: The role of the microbiome in prostate cancer is an emerging subject of research interest. Certain lifestyle factors, such as obesity and diet, can also impact the microbiome, which has been implicated in many diseases, such as heart disease and diabetes. However, this link has yet to be explored in detail in the context of prostate cancer.

View Article and Find Full Text PDF

Cutaneous squamous cell carcinoma (cSCC) is an increasingly common malignancy of the skin and the leading cause of death from skin cancer in adults over the age of 85. Fibroblast growth factor receptor 2 (FGFR2) has been identified as an important effector of signaling pathways that lead to the growth and development of cSCC. In recent years, there have been numerous studies evaluating the role FGFR2 plays in multiple cancers, its contribution to resistance to anticancer therapy, and new drugs that may be used to inhibit FGFR2.

View Article and Find Full Text PDF

As screening strategies employ better biomarkers and genetics to identify individuals at an increased risk of prostate cancer, there are currently no chemotherapeutic prevention strategies. With any chemoprevention strategy, the population will be younger and healthier; therefore, they will be less tolerant of side effects. This study translated findings from screening a natural product library and pre-clinical evaluation of curcumin (CURC) in combination with ursolic acid (UA) in prostate cancer models.

View Article and Find Full Text PDF

Obesity is associated with increased cancer risk, yet the underlying mechanisms remain elusive. Obesity-associated cancers involve disruptions in metabolic and cellular pathways, which can lead to genomic instability. Repetitive DNA sequences capable of adopting alternative DNA structures (e.

View Article and Find Full Text PDF

Purpose: Excess body and visceral fat increase the risk of death from prostate cancer (PCa). This phase II study aimed to test whether weight reduction by > 5% total body weight counteracts obesity-driven PCa biomarkers.

Materials And Methods: Forty men scheduled for prostatectomy were randomized into intervention (n = 20) or control (n = 20) arms.

View Article and Find Full Text PDF

Prostate cancer (PCa) is the second most common cancer type among American men and it is estimated that in 2023, 34,700 men will die from PCa. Since it can take a considerable amount of time for the disease to progress to clinically evident cancer, there is ample opportunity for effective chemopreventive strategies to be applied for the successful management of PCa progression. In the current study, we have developed a two-tiered metabolomics-based screen to identify synergistic combinations of phytochemicals for PCa chemoprevention.

View Article and Find Full Text PDF

Since its discovery, a major debate about mitochondrial uncoupling protein 3 (UCP3) has been whether its metabolic actions result primarily from mitochondrial inner membrane proton transport, a process that decreases respiratory efficiency and ATP synthesis. However, UCP3 expression and activity are induced by conditions that would seem at odds with inefficient 'uncoupled' respiration, including fasting and exercise. Here, we demonstrate that the bacterially expressed human UCP3, reconstituted into liposomes, catalyses a strict exchange of aspartate, malate, sulphate and phosphate.

View Article and Find Full Text PDF

The major barriers to phytonutrients in prostate cancer therapy are non-specific mechanisms and bioavailability issues. Studies have pointed to a synergistic combination of curcumin (CURC) and ursolic acid (UA). We investigate this combination using a systematic review process to assess the most likely mechanistic pathway and human testing in prostate cancer.

View Article and Find Full Text PDF

A potential role for fibroblast growth factor receptor 2 (FGFR2) in cutaneous squamous cell carcinoma (cSCC) has been reported. To demonstrate the specific role of FGFR2 in UVB-induced skin carcinogenesis and development of cSCC, we generated a keratinocyte specific, tamoxifen inducible mouse model of FGFR2 deficiency. In this mouse model, topical application of 4-hydroxy tamoxifen led to the induction of Cre recombinase to delete FGFR2 in epidermal keratinocytes of both male and female transgenic mice.

View Article and Find Full Text PDF

Many cancers, including melanoma, have a higher requirement for l-methionine in comparison with noncancerous cells. In this study, we show that administration of an engineered human methionine-γ-lyase (hMGL) significantly reduced the survival of both human and mouse melanoma cells in vitro. A multiomics approach was utilized to identify global changes in gene expression and in metabolite levels with hMGL treatment in melanoma cells.

View Article and Find Full Text PDF

Obesity is known to have important roles in driving prostate cancer aggressiveness and increased mortality. Multiple mechanisms have been postulated for these clinical observations, including effects of diet and lifestyle, systemic changes in energy balance and hormonal regulation and activation of signalling by growth factors and cytokines and other components of the immune system. Over the past decade, research on obesity has shifted towards investigating the role of peri-prostatic white adipose tissue as an important source of locally produced factors that stimulate prostate cancer progression.

View Article and Find Full Text PDF

Background: Prostate Cancer (PCa) represents one of the most commonly diagnosed neoplasms in men and is associated with significant morbidity and mortality. Therapy resistance and significant side effects of current treatment strategies indicate the need for more effective agents to treat both androgen-dependent and androgen-independent PCa. In earlier studies, we demonstrated that depletion of L-cysteine/cystine with an engineered human enzyme, Cyst(e)inase, increased intracellular ROS levels and inhibited PCa growth in vitro and in vivo.

View Article and Find Full Text PDF

Cutaneous squamous cell carcinoma (cSCC) represents an important clinical problem requiring novel approaches for both prevention and treatment. The transcription factor, Twist-related protein 1 (Twist1), has been identified as having a key mechanistic role in the development and progression of cSCC. Studies in relevant mouse models of cSCC have shown that Twist1 regulates epithelial-mesenchymal transition (EMT) and stemness driving progression and metastasis of cSCC.

View Article and Find Full Text PDF

Obesity is associated with increased prostate cancer (PCa) progression and higher mortality, however, the mechanism(s) remain still unclear. Here, we investigated signaling by the ASC-secreted chemokine CXCL12 in a mouse allograft model of PCa and in HiMyc mice in the context of diet-induced obesity. Treatment of mice with CXCR4 antagonist inhibited CXCL12-induced signaling pathways, tumor growth and EMT in HMVP2 allograft tumors.

View Article and Find Full Text PDF

Obesity represents an important risk factor for prostate cancer, driving more aggressive disease, chemoresistance, and increased mortality. White adipose tissue (WAT) overgrowth in obesity is central to the mechanisms that lead to these clinical observations. Adipose stromal cells (ASCs), the progenitors to mature adipocytes and other cell types in WAT, play a vital role in driving PCa aggressiveness.

View Article and Find Full Text PDF

Altered fibroblast GF receptor (FGFR) signaling has been shown to play a role in a number of cancers. However, the role of FGFR signaling in the development and progression of UVB-induced cutaneous squamous cell carcinoma remains unclear. In this study, the effect of UVB radiation on FGFR activation and its downstream signaling in mouse skin epidermis was examined.

View Article and Find Full Text PDF

Drugs used in combination can synergize to increase efficacy, decrease toxicity, and prevent drug resistance. While conventional high-throughput screens that rely on univariate data are incredibly valuable to identify promising drug candidates, phenotypic screening methodologies could be beneficial to provide deep insight into the molecular response of drug combination with a likelihood of improved clinical outcomes. We developed a high-content metabolomics drug screening platform using stable isotope-tracer direct-infusion mass spectrometry that informs an algorithm to determine synergy from multivariate phenomics data.

View Article and Find Full Text PDF
Article Synopsis
  • Current prostate cancer therapies improve patient outcomes but lack a cure for advanced cases like mCRPC.
  • Research shows that NUAK2 is overexpressed in prostate cancer and correlates with higher metastasis risk, making it a potential target for new treatments.
  • Inhibiting NUAK2 in lab studies and patient samples reduced cancer cell growth and tumor progression, suggesting its role as a promising target for further investigation in prostate cancer therapy.
View Article and Find Full Text PDF

Cancer cells undergo metabolic reprogramming to support increased demands in bioenergetics and biosynthesis and to maintain reactive oxygen species at optimum levels. As metabolic alterations are broadly observed across many cancer types, metabolic reprogramming is considered a hallmark of cancer. A metabolic alteration commonly seen in cancer cells is an increased demand for certain amino acids.

View Article and Find Full Text PDF

Serine/threonine kinase 3 (STK3) is an essential member of the highly conserved Hippo tumor suppressor pathway that regulates Yes-associated protein 1 (YAP1) and TAZ. STK3 and its paralog STK4 initiate a phosphorylation cascade that regulates YAP1/TAZ inhibition and degradation, which is important for regulated cell growth and organ size. Deregulation of this pathway leads to hyperactivation of YAP1 in various cancers.

View Article and Find Full Text PDF

Aggressiveness of carcinomas is linked with tumor recruitment of adipose stromal cells (ASC), which is increased in obesity. ASC promote cancer through molecular pathways not fully understood. Here, we demonstrate that epithelial-mesenchymal transition (EMT) in prostate tumors is promoted by obesity and suppressed upon pharmacological ASC depletion in HiMyc mice, a spontaneous genetic model of prostate cancer.

View Article and Find Full Text PDF

The transcription factor Twist1 has been reported to be essential for the formation and invasiveness of chemically induced tumors in mouse skin. However, the impact of keratinocyte-specific Twist1 deletion on skin carcinogenesis caused by UVB radiation has not been reported. Deletion of Twist1 in basal keratinocytes of mouse epidermis using K5.

View Article and Find Full Text PDF

Background: Several biologic mechanisms, including inflammation and immune changes, have been proposed to explain the role of obesity in prostate cancer (CaP) progression. Compared to men of a healthy weight, overweight and obese men are more likely to have CaP recurrence post-prostatectomy. Obesity is related to inflammation and immune dysregulation; thus, weight loss may be an avenue to reduce inflammation and reverse these immune processes.

View Article and Find Full Text PDF

Natural products have been used for centuries to treat various human ailments. In recent decades, multi-drug combinations that utilize natural products to synergistically enhance the therapeutic effects of cancer drugs have been identified and have shown success in improving treatment outcomes. While drug synergy research is a burgeoning field, there are disagreements on the definitions and mathematical parameters that prevent the standardization and proper usage of the terms synergy, antagonism, and additivity.

View Article and Find Full Text PDF