Publications by authors named "DiAnna L Hynds"

Nanocarrier drug delivery systems are attractive options for targeted delivery of survival- and regeneration-enhancing therapeutics to neurons damaged by degenerative or traumatic central nervous system (CNS) lesions. Functional groups on nanocarrier surfaces allow derivatization with molecules to target specific cells but may affect cellular interactions and nanocarrier uptake. We synthesized differently sized -COOH and -NH surface functionalized polymeric nanocarriers (SFNCs) by emulsion copolymerization and assessed uptake by different cell types in mixed cortical cultures.

View Article and Find Full Text PDF

G1P3/IFI6 is an interferon stimulated gene with antiapoptotic, prometastatic, and antiviral functions. Despite its pleiotropic functions, subcellular localization of G1P3 remains unclear. Using biochemical- and confocal microscopic approaches, this study identified the localization of G1P3 in organelles of the endomembrane system and in the mitochondria of breast cancer cells.

View Article and Find Full Text PDF

Alzheimer's disease (AD) manifests with loss of neurons correlated with intercellular deposition of amyloid (amyloid plaques) and intracellular neurofibrillary tangles of hyperphosphorylated tau. However, targeting AD hallmarks has not as yet led to development of an effective treatment despite numerous clinical trials. A better understanding of the early stages of neurodegeneration may lead to development of more effective treatments.

View Article and Find Full Text PDF

Mevalonate pathway inhibitors have been extensively studied for their roles in cholesterol depletion and for inhibiting the prenylation and activation of various proteins. Inhibition of protein prenylation has potential therapeutic uses against neurological disorders, like neural cancers, neurodegeneration, and neurotramatic lesions. Protection against neurodegeneration and promotion of neuronal regeneration is regulated in large part by Ras superfamily small guanosine triphosphatases (GTPases), particularly the Ras, Rho, and Rab subfamilies.

View Article and Find Full Text PDF
Article Synopsis
  • * The study identifies Rac1 as a crucial regulator in this process, showing that it becomes misdirected to the nucleus under high glucose conditions, promoting harmful signaling pathways.
  • * Metformin may help protect β-cells from glucotoxic damage by preventing Rac1 activation and maintaining cellular integrity, suggesting new therapeutic strategies for diabetes management.
View Article and Find Full Text PDF

Rac1 is an important regulator of axon extension, cell migration and actin reorganization. Like all Rho guanine triphosphatases (GTPases), Rac1 is targeted to the membrane by the addition of a geranylgeranyl moiety, an action thought to result in Rac1 guanosine triphosphate (GTP) binding. However, the role that Rac1 localization plays in its activation (GTP loading) and subsequent activation of effectors is not completely clear.

View Article and Find Full Text PDF

Inhibitors of the mevalonate pathway, including the highly prescribed statins, reduce the production of cholesterol and isoprenoids such as geranylgeranyl pyrophosphates. The Rho family of small guanine triphosphatases (GTPases) requires isoprenylation, specifically geranylgeranylation, for activation. Because Rho GTPases are primary regulators of actin filament rearrangements required for process extension, neurite arborization, and synaptic plasticity, statins may affect cognition or recovery from nervous system injury.

View Article and Find Full Text PDF

There are approximately 1.5 million people who experience traumatic injuries to the brain and 265,000 who experience traumatic injuries to the spinal cord each year in the United States. Currently, there are few effective treatments for central nervous system (CNS) injuries because the CNS is refractory to axonal regeneration and relatively inaccessible to many pharmacological treatments.

View Article and Find Full Text PDF

The diterpene geranylgeraniol (all trans-3,7,11,15-tetramethyl-2,6,10,14-hexadecatetraen-1-ol) suppresses the growth of human liver, lung, ovary, pancreas, colon, stomach and blood tumors with undefined mechanisms. We evaluated the growth-suppressive activity of geranylgeraniol in murine B16 melanoma cells. Geranylgeraniol induced dose-dependent suppression of B16 cell growth (IC(50) = 55 ± 13 µmol/L) following a 48-h incubation in 96-well plates.

View Article and Find Full Text PDF

Many lines of evidence indicate the importance of the Rho family guanine nucleotide triphosphatases (GTPases) in directing axon extension and guidance. The signaling networks that involve these proteins regulate actin cytoskeletal dynamics in navigating neuronal growth cones. However, the intricate patterns that regulate Rho GTPase activation and signaling are not yet fully defined.

View Article and Find Full Text PDF

Biocompatible magnetic nanoparticles hold great therapeutic potential, but conventional particles can be toxic. Here, we report the synthesis and alternating magnetic field dependent actuation of a remotely controllable, multifunctional nano-scale system and its marked biocompatibility with mammalian cells. Monodisperse, magnetic nanospheres based on thermo-sensitive polymer network poly(ethylene glycol) ethyl ether methacrylate-co-poly(ethylene glycol) methyl ether methacrylate were synthesized using free radical polymerization.

View Article and Find Full Text PDF

The Rho guanine nucleotide triphosphatases (GTPases) Rac1 and RhoA are important regulators of axon growth. However, the specific roles each plays are complicated by implications that each is involved in promoting and inhibiting neurite outgrowth. Differential regulation of Rac1 and RhoA activation in cell bodies and growth cones may be important in directing axon growth.

View Article and Find Full Text PDF

Transplantation of cellular populations to facilitate regrowth of damaged axons is a common experimental therapy for spinal cord injury. Schwann cells (SC) or microglia grafted into injury sites can promote axonal regrowth of central projections of dorsal root ganglion (DRG) sensory neurons. We sought to determine whether the addition of microglia or microglia-derived secretory products alters DRG axon regrowth upon cultures of SC.

View Article and Find Full Text PDF

Rit, by sequence homology, is a member of the Ras subfamily of small guanine triphosphatases (GTPases). In PC6 cells, Rit signals through pathways both common to and different from those activated by Ras to promote cell survival and neurite outgrowth. However, the specific morphological changes induced by Rit in human cells are not known.

View Article and Find Full Text PDF

Axon outgrowth and guidance are differentially promoted or inhibited by specific extracellular matrix (ECM) molecules. The effects of these molecules can be examined by culturing neuronal explants on patterned substrata consisting of alternating stripes adsorbed with the molecules of interest. While outgrowth on substrata adsorbed with homogenous molecules can be reliably quantified, current methods of quantifying neurite preference on patterned substrata are subjective, labor intensive, and overall less reliable.

View Article and Find Full Text PDF

Objective: To assess the effects of human intervertebral disc aggrecan on nerve growth and guidance, using in vitro techniques.

Methods: Aggrecan extracted from human lumbar intervertebral discs was incorporated into tissue culture substrata for the culture of the human neuronal cell line, SH-SY5Y, or explants of chick dorsal root ganglia. The effects on nerve growth of different concentrations of aggrecan extracted from the anulus fibrosus and nucleus pulposus, and of these aggrecan preparations following enzymic deglycosylation, were compared.

View Article and Find Full Text PDF