Glutamate uptake into synaptic vesicles in nerve terminals is a pivotal step in glutamate synaptic transmission. Glutamate is the major excitatory neurotransmitter and, as such, the vesicular glutamate transporter (VGLUT) responsible for this uptake is involved in a variety of nervous system functions and various types of pathophysiology. As yet, no VGLUT-specific, membrane-permeable agents have been developed to affect neuronal function in intact neurons, although two potent VGLUTspecific inhibitors are known.
View Article and Find Full Text PDFThe use of chiral phosphinamides is relatively unexplored because of the lack of a general method for the synthesis. Reported herein is the development of a general, efficient, and highly enantioselective method for the synthesis of structurally diverse P-stereogenic phosphinamides. The method relies on nucleophilic substitution of a chiral phosphinate derived from the versatile chiral phosphinyl transfer agent 1,3,2-benzoxazaphosphinine-2-oxide.
View Article and Find Full Text PDFChem Commun (Camb)
October 2012
A novel route to access trifluoromethylketones (TFMKs) from Weinreb amides is reported. This represents the first documented case of the Ruppert-Prakash reagent (TMS-CF(3)) reacting in a constructive manner with an amide and enables synthesis of TMFKs without risk of over-trifluoromethylation.
View Article and Find Full Text PDF