Publications by authors named "Di-Castro D"

We have investigated the 3d orbital excitations in CaCuO_{2} (CCO), Nd_{2}CuO_{4} (NCO), and La_{2}CuO_{4} (LCO) using high-resolution resonant inelastic x-ray scattering. In LCO they behave as well-localized excitations, similarly to several other cuprates. On the contrary, in CCO and NCO the d_{xy} orbital clearly disperses, pointing to a collective character of this excitation (orbiton) in compounds without apical oxygen.

View Article and Find Full Text PDF

We report a study of the structural phase transitions induced by pressure in bulk black phosphorus by using both synchrotron x-ray diffraction for pressures up to 12.2 GPa and Raman spectroscopy up to 18.2 GPa.

View Article and Find Full Text PDF

At interfaces between complex oxides it is possible to generate electronic systems with unusual electronic properties, which are not present in the isolated oxides. One important example is the appearance of superconductivity at the interface between insulating oxides, although, until now, with very low T(c). We report the occurrence of high T(c) superconductivity in the bilayer CaCuO(2)/SrTiO(3), where both the constituent oxides are insulating.

View Article and Find Full Text PDF

Scanning probe bias techniques have been used as a method to locally dope thin epitaxial films of La(2)CuO(4) (LCO) fabricated by pulsed laser deposition. The local electrochemical oxidation of LCO very efficiently introduces interstitial oxygen defects in the thin film. Details on the influence of the tip voltage bias and environmental conditions on the surface morphology have been investigated.

View Article and Find Full Text PDF

Yttrium-doped barium zirconate (BZY) thin films recently showed surprising electric transport properties. Experimental investigations conducted mainly by electrochemical impedance spectroscopy suggested that a consistent part of this BZY conductivity is of protonic nature. These results have stimulated further investigations by local unconventional techniques.

View Article and Find Full Text PDF

Learning in multilayer neural networks (MNNs) relies on continuous updating of large matrices of synaptic weights by local rules. Such locality can be exploited for massive parallelism when implementing MNNs in hardware. However, these update rules require a multiply and accumulate operation for each synaptic weight, which is challenging to implement compactly using CMOS.

View Article and Find Full Text PDF

A systematic study by reversible and hysteretic electrochemical strain microscopy (ESM) in samples of cerium oxide with different Sm content and in several working conditions allows disclosing the microscopic mechanism underlying the difference in electrical conduction mechanism and related surface activity, such as water adsorption and dissociation with subsequent proton liberation. We have measured the behavior of the reversible hysteresis loops by changing temperature and humidity, both in standard ESM configuration and using the first-order reversal curve method. The measurements have been performed in much smaller temperature ranges with respect to alternative measuring techniques.

View Article and Find Full Text PDF

The superconducting properties of (CaCuO2)n/(SrTiO3)m artificial superlattices have been investigated via transport measurements under the application of external magnetic fields. The coherence lengths in the plane of the substrate and in the direction perpendicular to it (ξab and ξc, respectively) have been measured while varying m, the thickness of the SrTiO3 block. The results show that with increasing m, i.

View Article and Find Full Text PDF

The effect of chemical and hydrostatic pressure has been studied systematically in a selected system belonging to the 1111 family of iron pnictide high-temperature superconductors. The results show a surprising similarity between the trend of critical temperature vs hydrostatic pressure for isoelectronic samples with different rare earths (RE) on the RE site and samples of the SmFeAsO(1-x)F(x) series with different doping levels. These results open new questions about the underlying mechanism for superconductivity in iron pnictides.

View Article and Find Full Text PDF

The effect of pressure on the magnetic penetration depth λ was tested for the hole-doped superconductor YBa(2)Cu(3)O(7-δ) and in the electron-doped one Sr(0.9)La(0.1)CuO(2) by means of magnetization measurements.

View Article and Find Full Text PDF

The various phases observed in all cuprate superconductors [superconducting (SC), spin-glass (SG), and antiferromagnetic (AFM)] were investigated with respect to oxygen-isotope (16O/18O) effects, using here as a prototype system of cuprates Y1-xPrxBa2Cu3O7-delta. All phases exhibit an isotope effect which is strongest where the respective phase terminates. In addition, the isotope effects on the magnetic phases (SG and AFM) are sign reversed as compared to the one on the superconducting phase.

View Article and Find Full Text PDF

The temperature dependence of the London penetration depth lambda was measured for an untwinned single crystal of YBa_{2}Cu_{3}O_{7-delta} along the three principal crystallographic directions (a, b, and c). Both in-plane components (lambda_{a};{-2} and lambda_{b};{-2}) show an inflection point in their temperature dependence which is absent in the component along the c direction (lambda_{c};{-2}). The data provide convincing evidence that the in-plane superconducting order parameter is a mixture of (s+d)-wave symmetry whereas it is mainly s wave along the c direction.

View Article and Find Full Text PDF

Raman and combined infrared transmission and reflectivity measurements were carried out at room temperature (RT) on monoclinic VO2 over the 0-19 GPa and 0-14 GPa pressure ranges. Both lattice dynamics and optical gap show a remarkable stability up to P* approximately 10 GPa whereas subtle modifications of V ion arrangements within the monoclinic lattice, together with the onset of a metallization process via band gap filling, are observed for P >P*. Differently from P=0, where the VO2 metallic phase is found only in conjunction with the rutile structure above 340 K, a new RT metallic phase within a monoclinic structure appears accessible in the high pressure regime.

View Article and Find Full Text PDF

Muon-spin-rotation (muSR) measurements of the in-plane penetration depth lambda(ab) have been performed in the infinite-layer electron-doped Sr0.9La0.1CuO2 high-T(c) superconductor (HTS).

View Article and Find Full Text PDF

Magnetization measurements under hydrostatic pressure up to 8 kbar in the pyrochlore superconductor RbOs2O6 (T(c) approximately or equal 6.3 K at p=0) were carried out. A positive pressure effect on T(c) with dT(c)/dp=0.

View Article and Find Full Text PDF

In recent years, infectious bursal disease virus (IBDV) has become a serious economic problem as a result of the emergence of new and very virulent strains. Most of the antibodies produced against IBDV are for the structural proteins viral protein (VP) 2 (VP2) and VP3. The purpose of this study was to test the potential of recombinant VP3 to induce protective antibodies.

View Article and Find Full Text PDF

We determined the sequence of the coding region of segment A, coding for the viral proteins (VPs) VP2, VP4, and VP3, of a very virulent (vv) infectious bursal disease virus (IBDV) isolated in Israel and named IBDVks. We compared the deduced amino acid sequences of the proteins of the new isolate with those of the same proteins from several IBDV isolates, as published in recent years. The amino acid sequences of VP3 and VP4 of the Israeli isolate were 1.

View Article and Find Full Text PDF

Infectious bursal disease virus (IBDV) has become a major problem in recent years. Conventional vaccines make use of attenuated or inactivated viral strains, but these are gradually losing their effectiveness. We investigated the possibility of using purified VP2, a subunit of IBDV structural protein expressed in insect cells, as a vaccine.

View Article and Find Full Text PDF