Resting state EEG in patients with disorders of consciousness (DOC) is characterized by an increase of power in the delta frequency band and a concurrent decrease in the alpha range, equivalent to a weakening or disappearance of the alpha peak. Prolongation of Intrinsic Neural Timescales (INTs) is also associated with DOCs. Together, this raises the question whether the decreased alpha peak relates to the prolonged INTs and, importantly, how that can be used for diagnosing the state of consciousness in DOC individuals.
View Article and Find Full Text PDFBackground: Disorders of consciousness (DoC) are a group of conditions that affect the level of awareness and communication in patients. While neuroimaging techniques can provide useful information about the brain structure and function in these patients, most existing methods rely on a single modality for analysis and rarely account for brain injury. To address these limitations, we propose a novel method that integrates two neuroimaging modalities, functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI), to enhance the classification of subjects into different states of consciousness.
View Article and Find Full Text PDFAntibiotics are frequently detected in wastewater, but often are poorly removed in conventional wastewater treatment processes. Combining microalgal and nitrifying bacterial processes may provide synergistic removal of antibiotics and ammonium. In this research, we studied the removal of the antibiotic sulfamethoxazole (SMX) in two different reactors: a conventional nitrifying bacterial membrane aerated biofilm reactor (bMABR) and algal-bacterial membrane aerated biofilm reactor (abMABR) systems.
View Article and Find Full Text PDFComput Med Imaging Graph
March 2024
Automatic brain segmentation of magnetic resonance images (MRIs) from severe traumatic brain injury (sTBI) patients is critical for brain abnormality assessments and brain network analysis. Construction of sTBI brain segmentation model requires manually annotated MR scans of sTBI patients, which becomes a challenging problem as it is quite impractical to implement sufficient annotations for sTBI images with large deformations and lesion erosion. Data augmentation techniques can be applied to alleviate the issue of limited training samples.
View Article and Find Full Text PDFClin Interv Aging
January 2024
Background: The effect of Ommaya reservoirs on the clinical outcomes of patients with intraventricular hemorrhage (IVH) remains unclear.
Objective: We aimed to determine the effect of combining the Ommaya reservoir and external ventricular drainage (EVD) therapy on IVH and explore better clinical indicators for Ommaya implantation.
Methods: A retrospective analysis was conducted on patients diagnosed with IVH who received EVD-Ommaya drainage between January 2013 and March 2021.
Time delays are a signature of many physical systems, including the brain, and considerably shape their dynamics; moreover, they play a key role in consciousness, as postulated by the temporo-spatial theory of consciousness (TTC). However, they are often not known a priori and need to be estimated from time series. In this study, we propose the use of permutation entropy (PE) to estimate time delays from neural time series as a more robust alternative to the widely used autocorrelation window (ACW).
View Article and Find Full Text PDFBrain network analysis based on structural and functional magnetic resonance imaging (MRI) is considered as an effective method for consciousness evaluation of hydrocephalus patients, which can also be applied to facilitate the ameliorative effect of lumbar cerebrospinal fluid drainage (LCFD). Automatic brain parcellation is a prerequisite for brain network construction. However, hydrocephalus images usually have large deformations and lesion erosions, which becomes challenging for ensuring effective brain parcellation works.
View Article and Find Full Text PDFOur brain processes the different timescales of our environment's temporal input stochastics. Is such a temporal input processing mechanism key for consciousness? To address this research question, we calculated measures of input processing on shorter (alpha peak frequency, APF) and longer (autocorrelation window, ACW) timescales on resting-state high-density EEG (256 channels) recordings and compared them across different consciousness levels (awake/conscious, ketamine and sevoflurane anaesthesia, unresponsive wakefulness, minimally conscious state). We replicate and extend previous findings of: (i) significantly longer ACW values, consistently over all states of unconsciousness, as measured with ACW-0 (an unprecedented longer version of the well-know ACW-50); (ii) significantly slower APF values, as measured with frequency sliding, in all four unconscious states.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
January 2023
It is quite challenging to establish a prompt and reliable prognosis assessment for acquired brain injury (ABI) patients with persistent severe disorders of consciousness (DOC) like unconscious comatose and unresponsive wakefulness syndrome (a.k.a.
View Article and Find Full Text PDFBackground: In patients with Disorders of Consciousness (DoC), recent evidence suggests that transcranial direct current stimulation (tDCS) can be a promising intervention for them. However, there has been little agreement on the treatment effect and the optimal treatment strategy for the tDCS in patients with DoC.
Objective: In this meta-analysis of individual patient data (IPD), we assess whether tDCS could improve DoC patients' behavioral performance.
Traffic-data recovery plays an important role in traffic prediction, congestion judgment, road network planning and other fields. Complete and accurate traffic data help to find the laws contained in the data more efficiently and effectively. However, existing methods still have problems to cope with the case when large amounts of traffic data are missed.
View Article and Find Full Text PDFThe neural mechanism that enables the recovery of consciousness in patients with unresponsive wakefulness syndrome (UWS) remains unclear. The aim of the current study is to characterize the cortical hub regions related to the recovery of consciousness. In the current fMRI study, voxel-wise degree centrality analysis was adopted to identify the cortical hubs related to the recovery of consciousness, for which a total of 27 UWS patients were recruited, including 13 patients who emerged from UWS (UWS-E), and 14 patients who remained in UWS (UWS-R) at least three months after the experiment performance.
View Article and Find Full Text PDFConsciousness is a mental characteristic of the human mind, whose exact neural features remain unclear. We aimed to identify the critical nodes within the brain's global functional network that support consciousness. To that end, we collected a large fMRI resting state dataset with subjects in at least one of the following three consciousness states: preserved (including the healthy awake state, and patients with a brain injury history (BI) that is fully conscious), reduced (including the N1-sleep state, and minimally conscious state), and lost (including the N3-sleep state, anesthesia, and unresponsive wakefulness state).
View Article and Find Full Text PDFThe brain exhibits a complex temporal structure which translates into a hierarchy of distinct neural timescales. An open question is how these intrinsic timescales are related to sensory or motor information processing and whether these dynamics have common patterns in different behavioral states. We address these questions by investigating the brain's intrinsic timescales in healthy controls, motor (amyotrophic lateral sclerosis, locked-in syndrome), sensory (anesthesia, unresponsive wakefulness syndrome), and progressive reduction of sensory processing (from awake states over N1, N2, N3).
View Article and Find Full Text PDFHydrocephalus is often treated with a cerebrospinal fluid shunt (CFS) for excessive amounts of cerebrospinal fluid in the brain. However, it is very difficult to distinguish whether the ventricular enlargement is due to hydrocephalus or other causes, such as brain atrophy after brain damage and surgery. The non-trivial evaluation of the consciousness level, along with a continuous drainage test of the lumbar cistern is thus clinically important before the decision for CFS is made.
View Article and Find Full Text PDFAssessing residual consciousness and cognitive abilities in unresponsive patients is a major clinical concern and a challenge for cognitive neuroscience. Although neuroimaging studies have demonstrated a potential for informing diagnosis and prognosis in unresponsive patients, these methods involve sophisticated brain imaging technologies, which limit their clinical application. In this study, we adopted a new language paradigm that elicited rhythmic brain responses tracking the single-word, phrase and sentence rhythms in speech, to examine whether bedside electroencephalography (EEG) recordings can help inform diagnosis and prognosis.
View Article and Find Full Text PDFBackground: Low-pressure hydrocephalus (LPH) and negative-pressure hydrocephalus (NegPH), secondary to traumatic brain injury, cerebral hemorrhage, tumor resection, and central nervous system (CNS) infection in adults, are seldom reported. They have not been recognized enough pathophysiologically in previous clinical practice. They used to have poor prognosis, and routine shunt surgery has unsatisfactory outcomes.
View Article and Find Full Text PDFThere have been many attempts to design brain-computer interfaces (BCIs) for wheelchair control based on steady state visual evoked potential (SSVEP), event-related desynchronization/synchronization (ERD/ERS) during motor imagery (MI) tasks, P300 evoked potential, and some hybrid signals. However, those BCI systems cannot implement the wheelchair navigation flexibly and effectively. In this paper, we propose a hybrid BCI scheme based on two-class MI and four-class SSVEP tasks.
View Article and Find Full Text PDFDisparity estimation for binocular images is an important problem for many visual tasks such as 3D environment reconstruction, digital hologram, virtual reality, robot navigation, etc. Conventional approaches are based on brightness constancy assumption to establish spatial correspondences between a pair of images. However, in the presence of large illumination variation and serious noisy contamination, conventional approaches fail to generate accurate disparity maps.
View Article and Find Full Text PDFOleoyl-carboxymethy-chitosan (OCMCS) nanoparticles based on chitosan with various molecular weights were prepared using coacervation process, which demonstrated particle size of 150-350 nm, zeta potential of 10-20 mV, and high encapsulation efficiency of fluorescein isothiocyanate dextran (FD4). OCMCS nanoparticles were found to be adsorbed onto the excised carp intestinal mucosa, the extent of adsorption increased with increasing chitosan molecular weight. In comparison to FD4 solution, OCMCS nanoparticles promoted FD4 transport through excised carp intestinal mucosa by 3.
View Article and Find Full Text PDFVisual correspondence has been a major research topic in the fields of image registration, 3D reconstruction, and object tracking for some decades. However, due to the radiometric variations of images, conventional approaches fail to produce robust matching results. The traditional method of intensity-based mutual information performs very good for global variations between images, however, its performance degrades in the case of local radiometric variations.
View Article and Find Full Text PDF