Federated Learning (FL) uses local data to perform distributed training on clients and combines resulting models on a public server to mitigate privacy exposure by avoiding data sharing. However, further research indicates that communication overheads continue to be the primary limitation for FL relative to alternative considerations. This is especially true when training models on non-independent and identically distributed data, such as financial default risk data, where FL's computational costs increase significantly.
View Article and Find Full Text PDFWeyl fermions can exhibit exotic phenomena due to their magnetic charge in momentum space, while Weyl nodes are usually located away from Fermi energy, which forms electron or hole pockets as the electric charges. Previous studies have mostly focused on the magnetic charge, however, the electric charges are rarely explored. Here, the intriguing Hall responses arising from the interplay between magnetic and electric charges of Weyl fermions in pyrochlore iridates are reported.
View Article and Find Full Text PDFTo support PTM proteomic analysis and annotation in different species, we developed PTMoreR, a user-friendly tool that considers the surrounding amino acid sequences of PTM sites during BLAST, enabling a motif-centric analysis across species. By controlling sequence window similarity, PTMoreR can map phosphoproteomic results between any two species, perform site-level functional enrichment analysis, and generate kinase-substrate networks. We demonstrate that the majority of real P-sites in mice can be inferred from experimentally derived human P-sites with PTMoreR mapping.
View Article and Find Full Text PDFThermoelectrics converting heat and electricity directly attract broad attentions. To enhance the thermoelectric figure of merit, zT, one of the key points is to decouple the carrier-phonon transport. Here, we propose an entropy engineering strategy to realize the carrier-phonon decoupling in the typical SrTiO-based perovskite thermoelectrics.
View Article and Find Full Text PDFManipulating optical chirality via electric fields has garnered considerable attention in the realm of both fundamental physics and practical applications. Chiral ferroelectrics, characterized by their inherent optical chirality and switchable spontaneous polarization, are emerging as a promising platform for electronic-photonic integrated circuits applications. Unlike organics with chiral carbon centers, integrating chirality into technologically mature inorganic ferroelectrics has posed a long-standing challenge.
View Article and Find Full Text PDFMagnons, bosonic quasiparticles carrying angular momentum, can flow through insulators for information transmission with minimal power dissipation. However, it remains challenging to develop a magnon-based logic due to the lack of efficient electrical manipulation of magnon transport. Here we show the electric excitation and control of multiferroic magnon modes in a spin-source/multiferroic/ferromagnet structure.
View Article and Find Full Text PDFAccurate state-of-health (SOH) estimation is critical for reliable and safe operation of lithium-ion batteries. However, reliable and stable battery SOH estimation remains challenging due to diverse battery types and operating conditions. In this paper, we propose a physics-informed neural network (PINN) for accurate and stable estimation of battery SOH.
View Article and Find Full Text PDFNanoscale spatially controlled modulation of the properties of ferroelectrics via artificial domain pattering is crucial to their emerging optoelectronics applications. New patterning strategies to achieve high precision and efficiency and to link the resultant domain structures with device functionalities are being sought. Here, we present an epitaxial heterostructure of SrRuO/PbTiO/SrRuO, wherein the domain configuration is delicately determined by the charge screening conditions in the SrRuO layer and the substrate strains.
View Article and Find Full Text PDFPolar metals have recently garnered increasing interest because of their promising functionalities. Here we report the experimental realization of an intrinsic coexisting ferromagnetism, polar distortion and metallicity in quasi-two-dimensional CaCoO. This material crystallizes with alternating stacking of oxygen tetrahedral CoO monolayers and octahedral CoO bilayers.
View Article and Find Full Text PDFUltrahigh-power-density multilayer ceramic capacitors (MLCCs) are critical components in electrical and electronic systems. However, the realization of a high energy density combined with a high efficiency is a major challenge for practical applications. We propose a high-entropy design in barium titanate (BaTiO)-based lead-free MLCCs with polymorphic relaxor phase.
View Article and Find Full Text PDFA highly sensitive fluorescent aptasensor for carcinoembryonic antigen (CEA) was developed by employing upconversion nanoparticles (UCNPs) as an energy donor and WS nanosheets as an energy acceptor, respectively. Polyacrylic acid (PAA) modified NaYF4:Yb/Er UCNPs and an amine modified CEA aptamer were linked together by a covalent bond. Owing to the physical adsorption between WS nanosheets and the CEA aptamer, the UCNPs-aptamer was close to WS nanosheets, resulting in upconversion fluorescence energy transfer from UCNPs to WS nanosheets, and the UCNP fluorescence was quenched.
View Article and Find Full Text PDFMagnetic skyrmions have great potential for developing novel spintronic devices. The electrical manipulation of skyrmions has mainly relied on current-induced spin-orbit torques. Recently, it was suggested that the skyrmions could be more efficiently manipulated by surface acoustic waves (SAWs), an elastic wave that can couple with magnetic moment via the magnetoelastic effect.
View Article and Find Full Text PDFTopology created by quasi-continuous spatial variations of a local polarization direction represents an exotic state of matter, but field-driven manipulation has been hitherto limited to creation and destruction. Here we report that relatively small electric or mechanical fields can drive the non-volatile rotation of polar spirals in discretized microregions of the relaxor ferroelectric polymer poly(vinylidene fluoride-ran-trifluoroethylene). These polar spirals arise from the asymmetric Coulomb interaction between vertically aligned helical polymer chains, and can be rotated in-plane through various angles with robust retention.
View Article and Find Full Text PDFElectrical control of magnetism is highly desirable for energy-efficient spintronic applications. Realizing electric-field-driven perpendicular magnetization switching has been a long-standing goal, which, however, remains a major challenge. Here, electric-field control of perpendicularly magnetized ferrimagnetic order via strain-mediated magnetoelectric coupling is reported.
View Article and Find Full Text PDFPhosphorylation is one of the most important post-translational modifications (PTMs) of proteins, governing critical protein functions. Most human proteins have been shown to undergo phosphorylation, and phosphoproteomic studies have been widely applied due to recent advancements in high-resolution mass spectrometry technology. Although the experimental workflow for phosphoproteomics has been well-established, it would be useful to optimize and summarize a detailed, feasible protocol that combines phosphoproteomics and data-independent acquisition (DIA), along with follow-up data analysis procedures due to the recent instrumental and bioinformatic advances in measuring and understanding tens of thousands of site-specific phosphorylation events in a single experiment.
View Article and Find Full Text PDFUsing point cloud to reconstruct the 3D model of a substation is crucial for smart grid operation. Its main objective is to swiftly capture equipment point cloud data and align each device's model within the large and noisy point cloud scene of the substation. However, substation reconstruction needs improvement due to the low efficiency of traditional noise-resistant clustering methods and challenges in accurately classifying similar-looking electrical equipment.
View Article and Find Full Text PDFCurrent induced spin-orbit torque (SOT) holds great promise for next generation magnetic-memory technology. Field-free SOT switching of perpendicular magnetization requires the breaking of in-plane symmetry, which can be artificially introduced by external magnetic field, exchange coupling or device asymmetry. Recently it has been shown that the exploitation of inherent crystal symmetry offers a simple and potentially efficient route towards field-free switching.
View Article and Find Full Text PDFSolomon rings, upholding the symbol of wisdom with profound historical roots, were widely used as decorations in ancient architecture and clothing. However, it was only recently discovered that such topological structures can be formed by self-organization in biological/chemical molecules, liquid crystals, etc. Here, we report the observation of polar Solomon rings in a ferroelectric nanocrystal, which consist of two intertwined vortices and are mathematically equivalent to a [Formula: see text] link in topology.
View Article and Find Full Text PDFMultistate resistive switching device emerges as a promising electronic unit for energy-efficient neuromorphic computing. Electric-field induced topotactic phase transition with ionic evolution represents an important pathway for this purpose, which, however, faces significant challenges in device scaling. This work demonstrates a convenient scanning-probe-induced proton evolution within WO, driving a reversible insulator-to-metal transition (IMT) at nanoscale.
View Article and Find Full Text PDFThe serine/threonine kinase AKT is a central node in cell signaling. While aberrant AKT activation underlies the development of a variety of human diseases, how different patterns of AKT-dependent phosphorylation dictate downstream signaling and phenotypic outcomes remains largely enigmatic. Herein, we perform a systems-level analysis that integrates methodological advances in optogenetics, mass spectrometry-based phosphoproteomics, and bioinformatics to elucidate how different intensity, duration, and pattern of Akt1 stimulation lead to distinct temporal phosphorylation profiles in vascular endothelial cells.
View Article and Find Full Text PDFHigh-dimensional optimization has numerous potential applications in both academia and industry. It is a major challenge for optimization algorithms to generate very accurate solutions in high-dimensional search spaces. However, traditional search tools are prone to dimensional catastrophes and local optima, thus failing to provide high-precision results.
View Article and Find Full Text PDFA deep memory bare-bones particle swarm optimization algorithm (DMBBPSO) for single-objective optimization problems is proposed in this paper. The DMBBPSO is able to perform high-precision local search while maintaining a large global search, thus providing a reliable solution to high-dimensional complex optimization problems. Normally, maintaining high accuracy while conducting global searches is an important challenge for single-objective optimizers.
View Article and Find Full Text PDFThe anomalous Hall effect (AHE) is a quantum coherent transport phenomenon that conventionally vanishes at elevated temperatures because of thermal dephasing. Therefore, it is puzzling that the AHE can survive in heavy metal (HM)/antiferromagnetic (AFM) insulator (AFMI) heterostructures at high temperatures yet disappears at low temperatures. In this paper, an unconventional high-temperature AHE in HM/AFMI is observed only around the Néel temperature of AFM, with large anomalous Hall resistivity up to 40 nΩ cm is reported.
View Article and Find Full Text PDF