Publications by authors named "Di Iorio Lucia"

Although mesophotic coral ecosystems account for approximately 80% of coral reefs, they remain largely unexplored due to their challenging accessibility. The acoustic richness within reefs has led scientists to consider passive acoustic monitoring as a reliable method for studying both altiphotic and mesophotic coral reefs. We investigated the relationship between benthic invertebrate sounds (1.

View Article and Find Full Text PDF

A working group from the Global Library of Underwater Biological Sounds effort collaborated with the World Register of Marine Species (WoRMS) to create an inventory of species confirmed or expected to produce sound underwater. We used several existing inventories and additional literature searches to compile a dataset categorizing scientific knowledge of sonifery for 33,462 species and subspecies across marine mammals, other tetrapods, fishes, and invertebrates. We found 729 species documented as producing active and/or passive sounds under natural conditions, with another 21,911 species deemed likely to produce sounds based on evaluated taxonomic relationships.

View Article and Find Full Text PDF

This study investigates the sounds and the anatomy of the sound-producing organ in the male and female sand-dwelling cusk-eel Parophidion vassali. Although both sexes have similar external phenotype, they can be distinguished by their sonic apparatus and sounds. As in many Ophioidei, Parophidion vassali presents a panel of highly derived characters.

View Article and Find Full Text PDF

One of the most studied aspects of animal communication is the acoustic repertoire difference between populations of the same species. While numerous studies have investigated the variability of bottlenose dolphin whistles between populations, very few studies have focused on the signature whistles alone and the factors underlying differentiation of signature whistles are still poorly understood. Here we describe the signature whistles produced by six distinct geographical units of the common bottlenose dolphin (Tursiops truncatus) in the Mediterranean Sea and identify the main determinants of their variability.

View Article and Find Full Text PDF

Monitoring the biodiversity of key habitats and understanding the drivers across spatial scales is essential for preserving ecosystem functions and associated services. Coralligenous reefs are threatened marine biodiversity hotspots that are challenging to monitor. As fish sounds reflect biodiversity in other habitats, we unveiled the biogeography of coralligenous reef sounds across the north-western Mediterranean using data from 27 sites covering 2000 km and 3 regions over a 3-year period.

View Article and Find Full Text PDF

Ecosystems and the communities they support are changing at alarmingly rapid rates. Tracking species diversity is vital to managing these stressed habitats. Yet, quantifying and monitoring biodiversity is often challenging, especially in ocean habitats.

View Article and Find Full Text PDF

Although several bioacoustics investigations have shed light on the acoustic communication of Mediterranean fish species, the occurrence of fish sounds has never been reported below -40 m depth. This study assessed the occurrence of fish sounds at greater depths by monitoring the soundscape of a Mediterranean submarine canyon (Calvi, France) thanks to a combination of Static Acoustic Monitoring (three stations, from -125 to -150 m depth, 3 km from coastline) and of hydrophone-integrated gliders (Mobile Acoustic Monitoring; from -60 to -900 m depth, 3-6 km from coastline). Biological sounds were detected in 38% of the audio files; ten sound types (for a total of more than 9.

View Article and Find Full Text PDF

The /Kwa/ vocalization dominates the soundscape of meadows but the identity of the species emitting this peculiar fish sound remains a mystery. Information from sounds recorded in the wild indicates that the emitting candidates should be abundant, nocturnal and benthic. spp.

View Article and Find Full Text PDF

The Acoustic Complexity Index (ACI) is increasingly applied to the study of biodiversity in aquatic habitats. However, it remains unknown which types of acoustic information are highlighted by this index in underwater environments. This study explored the robustness of the ACI to fine variations in fish sound abundance (i.

View Article and Find Full Text PDF

The wind dependence of acoustic spectrum between 100 Hz and 16 kHz is investigated for coastal biologically rich areas. The analysis of 5 months of continuous measurements run in a 10 m deep shallow water environment off Brittany (France) showed that wind dependence of spectral levels is subject to masking by biological sounds. When dealing with raw data, the wind dependence of spectral levels was not significant for frequencies where biological sounds were present (2 to 10 kHz).

View Article and Find Full Text PDF

The ability to perceive biologically important sounds is critical to marine mammals, and acoustic disturbance through human-generated noise can interfere with their natural functions. Sounds from seismic surveys are intense and have peak frequency bands overlapping those used by baleen whales, but evidence of interference with baleen whale acoustic communication is sparse. Here we investigated whether blue whales (Balaenoptera musculus) changed their vocal behaviour during a seismic survey that deployed a low-medium power technology (sparker).

View Article and Find Full Text PDF

Passive acoustic data are increasingly being used as a tool for helping to define marine mammal populations and stocks. Fin whale (Balaenoptera physalus) songs present a unique opportunity to determine interstock differences. Their highly stereotyped interpulse interval has been shown to vary between geographic areas and to remain stable over time in some areas.

View Article and Find Full Text PDF