Publications by authors named "Di Gai"

Medical image segmentation is a compelling fundamental problem and an important auxiliary tool for clinical applications. Recently, the Transformer model has emerged as a valuable tool for addressing the limitations of convolutional neural networks by effectively capturing global relationships and numerous hybrid architectures combining convolutional neural networks (CNNs) and Transformer have been devised to enhance segmentation performance. However, they suffer from multilevel semantic feature gaps and fail to account for multilevel dependencies between space and channel.

View Article and Find Full Text PDF

Semi-supervised medical image segmentation strives to polish deep models with a small amount of labeled data and a large amount of unlabeled data. The efficiency of most semi-supervised medical image segmentation methods based on voxel-level consistency learning is affected by low-confidence voxels. In addition, voxel-level consistency learning fails to consider the spatial correlation between neighboring voxels.

View Article and Find Full Text PDF

Medical image segmentation has long been a compelling and fundamental problem in the realm of neuroscience. This is an extremely challenging task due to the intensely interfering irrelevant background information to segment the target. State-of-the-art methods fail to consider simultaneously addressing both long-range and short-range dependencies, and commonly emphasize the semantic information characterization capability while ignoring the geometric detail information implied in the shallow feature maps resulting in the dropping of crucial features.

View Article and Find Full Text PDF

Due to the complexity of medical imaging techniques and the high heterogeneity of glioma surfaces, image segmentation of human gliomas is one of the most challenging tasks in medical image analysis. Current methods based on convolutional neural networks concentrate on feature extraction while ignoring the correlation between local and global. In this paper, we propose a residual mix transformer fusion net, namely RMTF-Net, for brain tumor segmentation.

View Article and Find Full Text PDF

Several poly ADP ribose polymerase inhibitors (PARPis) are currently approved for the treatment of a variety of cancers. The safety profile of PARPis has not yet been systemically analyzed in the real world. We conducted this pharmacovigilance analysis using the US FDA's Adverse Event Reporting System (FAERS) database to explore the difference in adverse events (AEs) among PARPis.

View Article and Find Full Text PDF

The fuzzy C-means clustering (FCM) algorithm is used widely in medical image segmentation and suitable for segmenting brain tumors. Therefore, an intuitionistic fuzzy C-means algorithm based on membership information transferring and similarity measurements (IFCM-MS) is proposed to segment brain tumor magnetic resonance images (MRI) in this paper. The original FCM lacks spatial information, which leads to a high noise sensitivity.

View Article and Find Full Text PDF