Publications by authors named "Dhruva V Raman"

The world is overabundant with feature-rich information obscuring the latent causes of experience. How do people approximate the complexities of the external world with simplified internal representations that generalize to novel examples or situations? Theories suggest that internal representations could be determined by decision boundaries that discriminate between alternatives, or by distance measurements against prototypes and individual exemplars. Each provide advantages and drawbacks for generalization.

View Article and Find Full Text PDF

Synaptic connections in many brain circuits fluctuate, exhibiting substantial turnover and remodelling over hours to days. Surprisingly, experiments show that most of this flux in connectivity persists in the absence of learning or known plasticity signals. How can neural circuits retain learned information despite a large proportion of ongoing and potentially disruptive synaptic changes? We address this question from first principles by analysing how much compensatory plasticity would be required to optimally counteract ongoing fluctuations, regardless of whether fluctuations are random or systematic.

View Article and Find Full Text PDF

Synapses and neural connectivity are plastic and shaped by experience. But to what extent does connectivity itself influence the ability of a neural circuit to learn? Insights from optimization theory and AI shed light on how learning can be implemented in neural circuits. Though abstract in their nature, learning algorithms provide a principled set of hypotheses on the necessary ingredients for learning in neural circuits.

View Article and Find Full Text PDF

Over days and weeks, neural activity representing an animal's position and movement in sensorimotor cortex has been found to continually reconfigure or 'drift' during repeated trials of learned tasks, with no obvious change in behavior. This challenges classical theories, which assume stable engrams underlie stable behavior. However, it is not known whether this drift occurs systematically, allowing downstream circuits to extract consistent information.

View Article and Find Full Text PDF

How does the size of a neural circuit influence its learning performance? Larger brains tend to be found in species with higher cognitive function and learning ability. Intuitively, we expect the learning capacity of a neural circuit to grow with the number of neurons and synapses. We show how adding apparently redundant neurons and connections to a network can make a task more learnable.

View Article and Find Full Text PDF

Scientists use mathematical modeling as a tool for understanding and predicting the properties of complex physical systems. In highly parametrized models there often exist relationships between parameters over which model predictions are identical, or nearly identical. These are known as structural or practical unidentifiabilities, respectively.

View Article and Find Full Text PDF