We investigated whether deep reinforcement learning (deep RL) is able to synthesize sophisticated and safe movement skills for a low-cost, miniature humanoid robot that can be composed into complex behavioral strategies. We used deep RL to train a humanoid robot to play a simplified one-versus-one soccer game. The resulting agent exhibits robust and dynamic movement skills, such as rapid fall recovery, walking, turning, and kicking, and it transitions between them in a smooth and efficient manner.
View Article and Find Full Text PDFOver the past 20 years, neuroscience research on reward-based learning has converged on a canonical model, under which the neurotransmitter dopamine 'stamps in' associations between situations, actions and rewards by modulating the strength of synaptic connections between neurons. However, a growing number of recent findings have placed this standard model under strain. We now draw on recent advances in artificial intelligence to introduce a new theory of reward-based learning.
View Article and Find Full Text PDF