Publications by authors named "Dhruv Menon"

Owing to the size scales that can be accessed, the nanoscale has opened doors to new physical and chemical properties, not seen in the bulk. These properties are leveraged by nanomaterials (NMs) across a plethora of applications. More recently, nanoscale metal-organic frameworks (nMOFs) have witnessed explosive growth due to the modularity of their chemical constituents, the ability to modify their composition and structure, and exceptional properties such as permanent porosity and high surface areas.

View Article and Find Full Text PDF

The chemistry of DNA endows it with certain functional properties that facilitate the generation of self-assembled nanostructures, offering precise control over their geometry and morphology, that can be exploited for advanced biological applications. Despite the structural promise of these materials, their applications are limited owing to lack of functional capability to interact favourably with biological systems, which has been achieved by functional proteins or peptides. Herein, we outline a strategy for functionalizing DNA structures with short-peptides, leading to the formation of DNA-peptide hybrid materials.

View Article and Find Full Text PDF

Despite its potential to transform society, materials research suffers from a major drawback: its long research timeline. Recently, machine-learning techniques have emerged as a viable solution to this drawback and have shown accuracies comparable to other computational techniques like density functional theory (DFT) at a fraction of the computational time. One particular class of machine-learning models, known as "generative models", is of particular interest owing to its ability to approximate high-dimensional probability distribution functions, which in turn can be used to generate novel data such as molecular structures by sampling these approximated probability distribution functions.

View Article and Find Full Text PDF

Owing to highly favourable properties such as enormous internal surface areas, high porosity and large flexibility, when it comes to the choice of precursors and high control over their structures and porosity, metal-organic frameworks (MOFs) have emerged as promising materials for applications such as gas storage and separation, catalysis, wastewater filtration, The applications of MOFs, despite being so lucrative materials, are very limitedly explored in biomedical applications owing to several concerns such as their biocompatibility, rate of degradation and rate of accumulation in tissues and biological systems. Newer methods are being developed to make MOFs more biologically palatable by their surface functionalization using biomolecules such as nucleic acids, amino acids and lipids. Here we present the progress in biofunctionalization methods of MOFs for improving their physical and chemical properties for biomedical applications, with special focus on their formation covalent and non-covalent routes.

View Article and Find Full Text PDF