Publications by authors named "Dhrubajyoti Das"

Article Synopsis
  • * A new study presents a surface acoustic wave (SAW) microchip that enhances the detection of DR through a noninvasive analysis of protein biomarkers in tear fluid, making the process quicker and more effective.
  • * Early tests show the SAW microchip's results align well with established methods, indicating it could significantly improve how DR is diagnosed and managed in diabetic patients, helping to prevent vision loss.
View Article and Find Full Text PDF

Background: Cell sorting is crucial in isolating specific cell populations. It enables detailed analysis of their functions and characteristics and plays a vital role in disease diagnosis, drug discovery, and regenerative medicine. Fluorescence-activated cell sorting (FACS) is considered the gold standard for high-speed single-cell sorting.

View Article and Find Full Text PDF

The unprecedented pandemic has raised the demand for prompt, precise, and large-scale virus detection techniques to control the transmission of contagious illnesses. In this study, a loop-mediated isothermal amplification (LAMP) based on-chip platform was developed to address this challenge using rotational diffusometry and functionalized Janus particles. A recombinant plasmid containing a cDNA sequence of the SARS-CoV-2 non-structural protein 2 (nsp2) gene was employed here as a proof-of-concept for COVID-19 detection.

View Article and Find Full Text PDF

Seeking optimized infectious pathogen detection tools is of primary importance to lessen the spread of infections, allowing prompt medical attention for the infected. Among nucleic-acid-based sensing techniques, loop-mediated isothermal amplification is a promising method, as it provides rapid, sensitive, and specific detection of microbial and viral pathogens and has enormous potential to transform current point-of-care molecular diagnostics. In this review, the advances in LAMP-based point-of-care diagnostics assays developed during the past few years for rapid and sensitive detection of infectious pathogens are outlined.

View Article and Find Full Text PDF

In the wake of a pandemic, the development of rapid, simple, and accurate molecular diagnostic tests can significantly aid in reducing the spread of infections. By combining particle imaging with molecular assays, a quick and highly sensitive biosensor can readily identify a pathogen at low concentrations. Here, we implement functionalized particle-enabled rotational diffusometry in combination with loop-mediated isothermal amplification for the rapid detection of the SARS-CoV-2 nsp2 gene in the recombinant plasmid as a proof of concept for COVID-19 diagnostics.

View Article and Find Full Text PDF

Rapid and sensitive detection of infectious bacteria is in all-time high demand to prevent the further spread of the infection and allow early medical intervention. In this study, we use rotational diffusometry (RD), a natural phenomenon characterized by Janus particles, to detect pathogens like by performing amplification of specific genes. This biosensing method is used to measure the change in viscosity of the fluid in the presence and absence of DNA in the solution by capturing images of modified microbeads at 10 Hz by a CCD camera followed by cross-correlation algorithm analysis.

View Article and Find Full Text PDF

In the microbial world, bacteria are the most effective agents in petroleum hydrocarbons (PHs) degradation, utilization/mineralization and they serve as essential degraders of crude oil contaminated environment. Some genes and traits are involved in the hydrocarbon utilization process for which transcriptome analyses are important to identify differentially expressed genes (DEGs) among different conditions, leading to a new understanding of genes or pathways associated with crude oil degradation. In this work, three crude oil utilizing Pseudomonas aeruginosa strains designated as N002, TP16 and J001 subjected to transcriptome analyses revealed a total of 81, 269 and 137 significant DEGs.

View Article and Find Full Text PDF

The Abel transform is a mathematical operation that transforms a cylindrically symmetric three-dimensional (3D) object into its two-dimensional (2D) projection. The inverse Abel transform reconstructs the 3D object from the 2D projection. Abel transforms have wide application across numerous fields of science, especially chemical physics, astronomy, and the study of laser-plasma plumes.

View Article and Find Full Text PDF

Staphylocoagulase, a protein produced by S. aureus, play major role in blood coagulation and investigations are in advance to discover more staphylocoagulase producing species. The present study demonstrates the identification of a coagulase producing bacteria and isolation, purification and characterization of the protein.

View Article and Find Full Text PDF

Micromonospora genus produces >700 bioactive compounds of medical relevance. In spite of its ability to produce high number of bioactive compounds, no genome sequence is available with comprehensive secondary metabolite gene clusters analysis for anti-microbial producing Micromonospora strains. Thus, here we contribute the full genome sequence of Micromonospora sp.

View Article and Find Full Text PDF

We report the 6.92-Mbp genome sequence of Micromonospora sp. HK10, isolated from soil samples collected from Kaziranga National Park, Assam, India.

View Article and Find Full Text PDF

The present research work reports the whole genome sequence analysis of Pseudomonas aeruginosa strain N002 isolated from crude oil contaminated soil of Assam, India having high crude oil degradation ability. The whole genome of the strain N002 was sequenced by shotgun sequencing using Ion Torrent method and complete genome sequence analysis was done. It was found that the strain N002 revealed versatility for degradation, emulsification and metabolizing of crude oil.

View Article and Find Full Text PDF