Publications by authors named "Dhivert E"

Microplastics (MP) have been reported in many rivers across the globe but their depositional and archiving mechanisms in sediments are not fully understood yet. The aim of this study was to identify potential controlling factors of MP spatial distribution in surface sediment after a characterisation (sediment composition, hydrological conditions, sedimentary environment) of 14 sampling sites in an 8 km segment of the Loire river. Samples were collected from 3 sedimentary environments (sandbars, riverbanks and semi-active channels) with diverse flooding frequencies, grain size distributions and total organic carbon (TOC) contents.

View Article and Find Full Text PDF

Microplastics (MPs, plastic items from 1 µm to 5 mm in size) are present in all environmental compartments. The evaluation of their concentration, fate, and spatial distribution is still a challenge for the scientific community. This concern is just debuting in developing countries, (i.

View Article and Find Full Text PDF

The quantification of microplastic (MP) pollution in rivers is often constrained by a lack of historical data on a multi-decadal scale, which hinders the evaluation of public policies. In this study, MP contents and trends were analyzed in dated sediment cores sampled upstream and downstream of a large metropolis, in environmental deposits that exhibited consistent sedimentation patterns from the 1980s to 2021. After a thorough sedimentological analysis, MPs were quantified in samples by micro Fourier Transform InfraRed spectroscopy (μFTIR imaging) and a density separation and organic matter digestion procedure.

View Article and Find Full Text PDF

Dam reservoirs can strongly influence the spatial distribution of sediment pollution by microplastics (MP). The Villerest reservoir (Loire River, 36 km long) is a good candidate to study the relationship between MP pollution and hydrosedimentary processes. Sediments were collected from the dam-controlled river section and from 3 km downstream.

View Article and Find Full Text PDF

From the 19th century, the Loire basin (France) presents potentially pollutant activities such as mining and heavy industries. This paper shows spatio-temporal distribution of trace elements in sediments at a basin-scale, based on a comparison of archived temporal signals recorded in four sedimentary cores. Anthropogenic sources contributing to sediment contamination are also characterized, using geochemical signatures recorded in river bank sediments of the most industrialized tributaries.

View Article and Find Full Text PDF

During the 20th century, the local economy of the Upper Loire Basin (ULB) was essentially based on industrial coal mining extraction. One of the major French coal districts with associated urban/industrial activities and numerous coking/gas plants were developed in the Ondaine-Furan subbasins, two tributaries of the upper Loire main stream. To determine the compositional assemblage, the level and the potential sources of contamination, the historical sedimentary chronicle of the 16 US EPA priority polycyclic aromatic hydrocarbons (PAHs) has been investigated.

View Article and Find Full Text PDF

Floodplains are often cored to build long-term pollutant trends at the basin scale. To highlight the influences of depositional environments on archiving processes, aggradation rates, archived trace element signals and vertical redistribution processes, two floodplain cores were sampled near in two different environments of the Upper Loire River (France): (i) a river bank ridge and (ii) a paleochannel connected by its downstream end. The base of the river bank core is composed of sandy sediments from the end of the Little Ice Age (late 18th century).

View Article and Find Full Text PDF

This study investigates the relevance of several soil chemical extractions (calcium chloride, acetic acid, citric acid and a four-step sequential procedure) and predicted free metal ion activities in the soil solution to characterise the transfer of trace metals (Cd, Pb, and Zn) from soil to snail soft tissues over a large smelter-impacted area (Metaleurop Nord, Nord-Pas-de-Calais, France). The study was first performed on six snail species together and then specifically on Cepaea sp. and Oxychilus draparnaudi.

View Article and Find Full Text PDF