A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.
View Article and Find Full Text PDFWe report a combined theoretical/experimental study of dynamic screening of excitons in media with frequency-dependent dielectric functions. We develop an analytical model showing that interparticle interactions in an exciton are screened in the range of frequencies from zero to the characteristic binding energy depending on the symmetries and transition energies of that exciton. The problem of the dynamic screening is then reduced to simply solving the Schrodinger equation with an effectively frequency-independent potential.
View Article and Find Full Text PDFThe organization and composition of the extracellular matrix (ECM) have been shown to impact the propagation of electrical signals in multiple tissue types. To date, many studies with electroactive biomaterial substrates have relied upon passive electrical stimulation of the ionic media to affect cell behavior. However, development of cell culture systems in which stimulation can be directly applied to the material - thereby isolating the signal to the cell-material interface and cell-cell contracts - would provide a more physiologically-relevant paradigm for investigating how electrical cues modulate lineage-specific stem cell differentiation.
View Article and Find Full Text PDFRecently, there has been much interest in the extraction of hot electrons generated from surface plasmon decay, as this process can be used to achieve additional bandwidth for both photodetectors and photovoltaics. Hot electrons are typically injected into semiconductors over a Schottky barrier between the metal and semiconductor, enabling generation of photocurrent with below bandgap photon illumination. As a two-dimensional semiconductor single and few layer molybdenum disulfide (MoS2) has been demonstrated to exhibit internal photogain and therefore becomes an attractive hot electron acceptor.
View Article and Find Full Text PDFWe investigate near-field energy transfer between chemically synthesized quantum dots (QDs) and two-dimensional semiconductors. We fabricate devices in which electrostatically gated semiconducting monolayer molybdenum disulfide (MoS2) is placed atop a homogeneous self-assembled layer of core-shell CdSSe QDs. We demonstrate efficient nonradiative Förster resonant energy transfer (FRET) from QDs into MoS2 and prove that modest gate-induced variation in the excitonic absorption of MoS2 leads to large (∼500%) changes in the FRET rate.
View Article and Find Full Text PDFIn the pursuit of ultrasmall electronic components, monolayer electronic devices have recently been fabricated using transition-metal dichalcogenides. Monolayers of these materials are semiconducting, but nanowires with stoichiometry MX (M = Mo or W, X = S or Se) have been predicted to be metallic. Such nanowires have been chemically synthesized.
View Article and Find Full Text PDFGraphene is a novel material whose application in biomedical sciences has only begun to be realized. In the present study, we have employed three-dimensional graphene foams as culture substrates for human mesenchymal stem cells and provide evidence that these materials can maintain stem cell viability and promote osteogenic differentiation.
View Article and Find Full Text PDFWe report the fabrication of a hybrid light-harvesting electrode consisting of photosystem I (PSI) proteins extracted from spinach and adsorbed as a monolayer onto electrically contacted, large-area graphene. The transparency of graphene supports the choice of an opaque mediator at elevated concentrations. For example, we report a photocurrent of 550 nA/cm(2) from a monolayer of PSI on graphene in the presence of 20 mM methylene blue, which yields an opaque blue solution.
View Article and Find Full Text PDFMonolayers of iron oxide nanoparticles of two different sizes, 9.6 nm and 16.5 nm, were fabricated through electrophoretic deposition.
View Article and Find Full Text PDFWe report the use of atomically thin layers of graphene as a protective coating that inhibits corrosion of underlying metals. Here, we employ electrochemical methods to study the corrosion inhibition of copper and nickel by either growing graphene on these metals, or by mechanically transferring multilayer graphene onto them. Cyclic voltammetry measurements reveal that the graphene coating effectively suppresses metal oxidation and oxygen reduction.
View Article and Find Full Text PDFThe remarkable mechanical properties of graphene, the thinnest, lightest, and strongest material in existence, are desirable in applications ranging from composite materials to sensors and actuators. Here, we demonstrate that these mechanical properties are strongly affected by the interaction with the substrate onto which graphene is deposited. By measuring the temperature-dependent deflection of graphene/substrate "bimetallic" cantilevers we determine strain, thermal expansion coefficient, and the adhesion force acting on graphene films attached to a substrate.
View Article and Find Full Text PDF