Leishmaniasis, a major globally re-emerging neglected tropical disease, has a restricted repertoire of chemotherapeutic options due to a narrow therapeutic index, drug resistance, or patient non-compliance due to toxicity. The disease is caused by the parasite Leishmania that resides in two different forms in two different environments: as sessile intracellular amastigotes within mammalian macrophages and as motile promastigotes in sandfly gut. As mitogen-activated protein kinases (MAPKs) play important roles in cellular differentiation and survival, we studied the expression of Leishmania donovani MAPKs (LdMAPKs).
View Article and Find Full Text PDFEstablishing a balance between Th1 and Th2 subsets and M1- and M2-type macrophages is essential for the control of Leishmania infection. The suppressors of cytokine secretion (SOCS) proteins, particularly SOCS1 and SOCS3, play a significant role in regulating cytokine-triggered signaling pathways, thereby impacting the macrophage-and effector T-cell mediated antileishmanial immune response. In addition to the pro-inflammatory cytokines, Leishmania-derived lipophosphoglycan (LPG) and CpG-DNA interact with TLR2 and TLR9 to trigger SOCS expression.
View Article and Find Full Text PDFPreviously, we established that as a function of its mode of interaction with its ligand or cellular conditions such as membrane lipids, preexisting signaling intermediates activation status, a transmembrane receptor, as represented here with CD40, can induce counteractive cellular responses. Using CD40-binding peptides, recombinant mutated CD40-ligands, and an agonistic antibody, we have established the functional duality of CD40. CD40 builds up two constitutionally different signalosomes on lipid raft and non-raft membrane domains initiating two different signaling pathways.
View Article and Find Full Text PDFIFN-γ, a type 2 interferon and a cytokine, is critical for both innate and adaptive immunity. IFN-γ binds to the IFN-γRs on the cell membrane of macrophages, signals through JAK1-STAT-1 pathway and induces IFN-γ-stimulated genes (ISGs). As Leishmania amastigotes reside and replicate within macrophages, IFN-γ mediated macrophage activation eventuate in Leishmania elimination.
View Article and Find Full Text PDF