Publications by authors named "Dhileep Sivam"

Two key biological features distinguish Trypanosoma evansi from the T. brucei group: independence from the tsetse fly as obligatory vector, and independence from the need for functional mitochondrial DNA (kinetoplast or kDNA). In an effort to better understand the molecular causes and consequences of these differences, we sequenced the genome of an akinetoplastic T.

View Article and Find Full Text PDF

Coccidioides immitis is a pathogenic fungus populating the southwestern United States and is a causative agent of coccidioidomycosis, sometimes referred to as Valley Fever. Although the genome of this fungus has been sequenced, many operons are not properly annotated. Crystal structures are presented for a putative uncharacterized protein that shares sequence similarity with ζ-class glutathione S-transferases (GSTs) in both apo and glutathione-bound forms.

View Article and Find Full Text PDF

TriTrypDB (http://tritrypdb.org) is an integrated database providing access to genome-scale datasets for kinetoplastid parasites, and supporting a variety of complex queries driven by research and development needs. TriTrypDB is a collaborative project, utilizing the GUS/WDK computational infrastructure developed by the Eukaryotic Pathogen Bioinformatics Resource Center (EuPathDB.

View Article and Find Full Text PDF

Background: Trypanosoma brucei, the causative agent of African sleeping sickness, undergoes a complex developmental cycle that takes place in mammalian and insect hosts and is accompanied by changes in metabolism and cellular morphology. While differences in mRNA expression have been described for many genes, genome-wide expression analyses have been largely lacking. Trypanosomatids represent a unique case in eukaryotes in that they transcribe protein-coding genes as large polycistronic units, and rarely regulate gene expression at the level of transcription initiation.

View Article and Find Full Text PDF

Microarrays are an important tool for understanding global gene expression changes, and the resulting data sets can be used to direct physiologic and metabolic studies. To take advantage of this technology, 60-mer oligonucleotide microarrays were designed for Methylobacterium extorquens AM1 to study gene expression changes that occur under differing physiological conditions. The carbon utilization pathways for methanol and succinate have been well characterized, and growth with these substrates was chosen as the condition used to validate the microarray data.

View Article and Find Full Text PDF

Leishmania species cause a spectrum of human diseases in tropical and subtropical regions of the world. We have sequenced the 36 chromosomes of the 32.8-megabase haploid genome of Leishmania major (Friedlin strain) and predict 911 RNA genes, 39 pseudogenes, and 8272 protein-coding genes, of which 36% can be ascribed a putative function.

View Article and Find Full Text PDF