In vertebrates, olfactory receptors localize on multiple cilia elaborated on dendritic knobs of olfactory sensory neurons (OSNs). Although olfactory cilia dysfunction can cause anosmia, how their differentiation is programmed at the transcriptional level has remained largely unexplored. We discovered in zebrafish and mice that Foxj1, a forkhead domain-containing transcription factor traditionally linked with motile cilia biogenesis, is expressed in OSNs and required for olfactory epithelium (OE) formation.
View Article and Find Full Text PDFMotile cilia defects impair cerebrospinal fluid (CSF) flow and can cause brain and spine disorders. The development of ciliated cells, their impact on CSF flow, and their function in brain and axial morphogenesis are not fully understood. We have characterized motile ciliated cells within the zebrafish brain ventricles.
View Article and Find Full Text PDFMulticiliated cells (MCCs) differentiate hundreds of motile cilia that beat to drive fluid movement over various kinds of epithelia. In Xenopus, mice and human, the coiled-coil containing protein Mcidas (Mci) has been shown to be a key transcriptional regulator of MCC differentiation. We have examined Mci function in the zebrafish, another model organism that is widely used to study ciliary biology.
View Article and Find Full Text PDFEsoteric organelles called deuterosomes have been implicated in the explosive production of hundreds of basal bodies in multiciliated cells (MCCs). A new study by Meunier, Holland, and colleagues now shows that deuterosomes are dispensable, re-igniting the quest for mechanisms driving basal body biogenesis in this specialized ciliated cell type.
View Article and Find Full Text PDF