Publications by authors named "Dhawal Chobisa"

Neovascular age-related macular degeneration (nAMD) is a leading cause of vision loss in older adults. nAMD is treated with biologics targeting vascular endothelial growth factor; however, many patients do not respond to the current therapy. Here, a small molecule drug, griseofulvin (GRF), is used due to its inhibitory effect on ferrochelatase, an enzyme important for choroidal neovascularization (CNV).

View Article and Find Full Text PDF

Polymeric systems made of poly(lactic acid) or poly(lactic-co-glycolic acid) are widely used for long-term delivery of small and large molecules. The advantages of poly(lactic acid)/poly(lactic-co-glycolic acid) systems include biodegradability, safety and a long history of use in US FDA-approved products. However, as drugs delivered by the polymeric systems and their applications become more diverse, the significance of microenvironment change of degrading systems on long-term drug stability and release kinetics has gained renewed attention.

View Article and Find Full Text PDF

Inflammation that is not resolved in due course becomes a chronic disease. The treatment of chronic inflammatory diseases involves a long-term use of anti-inflammatory drugs such as corticosteroids and nonsteroidal anti-inflammatory drugs, often accompanied by dose-dependent side effects. Local drug delivery systems have been widely explored to reduce their off-target side effects and the medication frequency, with several products making to the market or in development over the years.

View Article and Find Full Text PDF

Parenteral administration of Busulfan (BU) conquers the bioavailability and biovariability related issues of oral BU by maintaining the plasma drug concentration in therapeutic range with minimal fluctuations thereby significantly reducing the side effects. Busulfex is the only commercially available parenteral formulation of BU composed of organic solvents N, N-dimethylacetamide and polyethylene glycol 400. Since, BU is highly susceptible to hydrolytic degradation; Busulfex has poor physical and chemical stability in IV fluids.

View Article and Find Full Text PDF