J Phys Condens Matter
August 2023
Altermagnet (AM) is a novel time reversal symmetry broken magnetic phase with-wave order which has been experimentally realized recently. We discuss theoretical models of AM based systems on lattice and in continuum. We show equivalence between the lattice and continuum models by mapping the respective parameters.
View Article and Find Full Text PDFA combination of out-of-plane (OOP) and in-plane (IP) magnetoconductance (MC) study in topological insulators (TI) is often used as an experimental technique to probe weak anti-localization (WAL) response of the topological surface states (TSSs). However, in addition to the above WAL response, weak localization (WL) contribution from conducting bulk states are also known to coexist and contribute to the overall MC; a study that has so far received limited attention. In this article, we accurately extract the above WL contribution by systematically analyzing the temperature and magnetic field dependency of conductivity in BiSefilms.
View Article and Find Full Text PDFJ Phys Condens Matter
June 2021
Recently, in topological insulators (TIs) the phenomenon of planar Hall effect wherein a current driven in presence an in-plane magnetic field generates a transverse voltage has been experimentally witnessed. There have been a couple of theoretical explanations of this phenomenon. We investigate this phenomenon based on scattering theory on a normal metal (NM)-TI-normal metal hybrid structure and calculate the conductances in longitudinal and transverse directions to the applied bias.
View Article and Find Full Text PDFSignificant control over the properties of a high-carrier density superconductor via an applied electric field has been considered infeasible due to screening of the field over atomic length scales. Here, we demonstrate an enhancement of up to 30% in critical current in a back-gate tunable NbN micro- and nano superconducting bridges. Our suggested plausible mechanism of this enhancement in critical current based on surface nucleation and pinning of Abrikosov vortices is consistent with expectations and observations for type-II superconductor films with thicknesses comparable to their coherence length.
View Article and Find Full Text PDFTwo-dimensional nanoelectronics, plasmonics, and emergent phases require clean and local charge control, calling for layered, crystalline acceptors or donors. Our Raman, photovoltage, and electrical conductance measurements combined with calculations establish the large work function and narrow bands of α-RuCl enable modulation doping of exfoliated single and bilayer graphene, chemical vapor deposition grown graphene and WSe, and molecular beam epitaxy grown EuS. We further demonstrate proof of principle photovoltage devices, control via twist angle, and charge transfer through hexagonal boron nitride.
View Article and Find Full Text PDFJ Phys Condens Matter
December 2017
We present a detailed study of thermal and electrical transport behavior of single crystal titanium disulphide flakes, which belong to the two dimensional, transition metal dichalcogenide class of materials. In-plane Seebeck effect measurements revealed a typical metal-like linear temperature dependence in the range of 85-285 K. Electrical transport measurements with in-plane current geometry exhibited a nearly T dependence of resistivity in the range of 42-300 K.
View Article and Find Full Text PDF