Publications by authors named "Dhaval A Shah"

The objective of the present project was to develop and optimize the Ibuprofen (IBU)-loaded nanostructured lipid carrier (IBU-NLCs) for sustained-release ocular drug delivery using a quality-by-design (QbD) approach. The BCS class II drug IBU was selected as the model drug for the preparation of IBU-NLCs by melt-emulsification and ultrasonication technique. Extensive preformulation screening of the components of NLC dispersion (i.

View Article and Find Full Text PDF

A Design of Experiment (DoE) methodology was adopted to investigate and optimize process parameters and formulations variables for preparing an amorphous clotrimazole (CLT) nanosuspension by sonoprecipitation technique. The amorphous nanosuspension can provide a synergistic effect of increase in dissolution velocity and kinetic solubility which can be advantageously used to improve bioavailability of low-solubility drugs. A Box-Behnken design was utilized to study the effect of formulation parameters (drug concentration, polymer concentration, and surfactant concentration) and process parameter (antisolvent: solvent ratio) on particle size, polydispersibility index (PDI), and zeta potential of amorphous CLT nanoparticles.

View Article and Find Full Text PDF

The hot melt extrusion (HME) technology was explored and optimized to solidify an amorphous nanosuspension using Quality by Design (QbD) methodology. A design of experiments (DoE) approach was used to perform a set of 15 experiments, varying independent variables (feed rate, input temperature, and screw speed) within a design space. Redispersibility index (RDI), moisture content, and process yield constituted the critical quality attributes (CQAs) of the experimental design.

View Article and Find Full Text PDF

The purpose for the current research is to compare and evaluate physiochemical properties of spray-dried (SD) microcrystals (MCs), nanocrystals (NCs), and nanocrystals with a dispersion agent (NCm) from a poorly soluble compound. The characterization was carried out by performing size and surface analysis, interfacial tension (at particle moisture interface), and in-vitro drug dissolution rate experiments. Nanosuspensions were prepared by media milling and were spray-dried.

View Article and Find Full Text PDF

Variations in the solid state form of a pharmaceutical solid have profound impact on the product quality and clinical performance. Quantitative models that allow rapid and accurate determination of polymorphic changes in pharmaceutical products are essential in ensuring product quality throughout its lifecycle. This study reports the development and validation of chemometric models of Raman and near infrared spectroscopy (NIR) for quantifying the extent of pseudopolymorphic transitions of theophylline in extended release formulations.

View Article and Find Full Text PDF

Nanocrystals have emerged as a potential formulation strategy to eliminate the bioavailability-related problems by enhancing the initial dissolution rate and moderately super-saturating the thermodynamic solubility. This review contains an in-depth knowledge of, the processing method for formulation, an accurate quantitative assessment of the solubility and dissolution rates and their correlation to observe pharmacokinetic data. Poor aqueous solubility is considered the major hurdle in the development of pharmaceutical compounds.

View Article and Find Full Text PDF

The quantitative determination of solubility and the initial dissolution rate enhancement of crystalline nanoparticles were critically investigated using a separation-based approach (ultracentrifugation and filtration). Four poorly soluble model compounds (griseofulvin, celecoxib, compound-X, and fenofibrate) were used in this investigation. The effect of the stabilizer concentration on the solubility of the unmilled compound was determined first to quantify its impact on the solubility and used for comparing solubility enhancement upon nanosizing.

View Article and Find Full Text PDF

The title compound, C23H21ClN4, contains two molecules (A and B) in the asymmetric unit, which are related to one another by a pseudo-inversion center. The non-aromatic pyrrolidine ring in each independent mol-ecule adopts a half-chair conformation; the ring puckering parameters are θ = 0.407 (3) Å and ϕ = 270.

View Article and Find Full Text PDF