Mitragynine is an indole alkaloid isolated from the Thai medicinal plant Mitragyna speciosa that is reported to have opioid agonistic properties. The 9-demethyl analogue of mitragynine, 9-hydroxycorynantheidine, is synthesized from mitragynine. 9-Hydroxycorynantheidine inhibited electrically stimulated guinea-pig ileum contraction, but its maximum inhibition was weaker than that of mitragynine and its effect was antagonized by naloxone, suggesting that 9-hydroxycorynantheidine possesses partial agonist properties on opioid receptors.
View Article and Find Full Text PDFThe effect of an indole-alkaloid mitragynine isolated from the Thai medicinal herb kratom (Mitragyna speciosa) on neurogenic contraction of smooth muscle was studied in guinea-pig vas deferens. Mitragynine inhibited the contraction of the vas deferens produced by electrical transmural stimulation. On the other hand, mitragynine failed to affect the responses to norepinephrine and ATP.
View Article and Find Full Text PDFRecently, we found that mitragynine, a major constituent of Mitragyna speciosa, has an opioid agonistic activity, but its weak potency could not explain the opium-like effect of this plant. In the present study, bioassay-guided fractionation of the crude extract of the leaves of M. speciosa was carried out to search for potent opioid agonists other than mitragynine.
View Article and Find Full Text PDFMitragynine is an indole alkaloid isolated from the Thai medicinal plant Mitragyna speciosa. We previously reported the morphine-like action of mitragynine and its related compounds in the in vitro assays. In the present study, we investigated the opioid effects of 7-hydroxymitragynine, which is isolated as its novel constituent, on contraction of isolated ileum, binding of the specific ligands to opioid receptors and nociceptive stimuli in mice.
View Article and Find Full Text PDFMitragynine (1) is a major alkaloidal component in the Thai traditional medicinal herb, Mitragyna speciosa, and has been proven to exhibit analgesic activity mediated by opioid receptors. By utilizing this natural product as a lead compound, synthesis of some derivatives, evaluations of the structure-activity relationship, and surveys of the intrinsic activities and potencies on opioid receptors were performed with guinea pig ileum. The affinities of some compounds for mu-, delta-, and kappa-receptors were determined in a receptor binding assay.
View Article and Find Full Text PDF