Neutrophils are increasingly implicated in chronic inflammation and metabolic disorders. Here, we show that visceral adipose tissue (VAT) from individuals with obesity contains more neutrophils than in those without obesity and is associated with a distinct bacterial community. Exploring the mechanism, we gavaged microbiome-depleted mice with stool from patients with and without obesity during high-fat or normal diet administration.
View Article and Find Full Text PDFObesity is a global health crisis that contributes to morbidity and mortality worldwide. Obesity's comorbid association with a variety of diseases, from metabolic syndrome to neurodegenerative disease, underscores the critical need to better understand the pathobiology of obesity. Adipose tissue, once seen as an inert storage depot, is now recognized as an active endocrine organ, regulating metabolic and systemic homeostasis.
View Article and Find Full Text PDFObesity is epidemic and of great concern because of its comorbid and costly inflammatory-driven complications. Extensive investigations in mice have elucidated highly coordinated, well-balanced interactions between adipocytes and immune cells in adipose tissue that maintain normal systemic metabolism in the lean state, while in obesity, proinflammatory changes occur in nearly all adipose tissue immune cells. Many of these changes are instigated by adipocytes.
View Article and Find Full Text PDFDecreased adipose tissue regulatory T cells contribute to insulin resistance in obese mice, however, little is known about the mechanisms regulating adipose tissue regulatory T cells numbers in humans. Here we obtain adipose tissue from obese and lean volunteers. Regulatory T cell abundance is lower in obese vs.
View Article and Find Full Text PDFAdv Exp Med Biol
February 2021
Obesity dramatically increases the risk of numerous conditions, including type 2 diabetes mellitus and other components of the metabolic syndrome. Pro-inflammatory changes that occur in adipose tissue are critical to the pathogenesis of these obesity-induced complications. Adipose tissue is one of the body's largest endocrine organs, and the cells that comprise the adipose tissue immunoenvironment secrete multiple factors (including adipokines and cytokines) that impact systemic metabolism.
View Article and Find Full Text PDFIn mammals, leptin production in adipocytes is up-regulated by feeding and insulin. Although this regulatory connection is central to all physiological effects of leptin, its molecular mechanism remains unknown. Here, we show that the transcription factor early growth response 1, Egr1, is rapidly but transiently induced by insulin in adipose cells both and , and its induction is followed by an increase in leptin transcription.
View Article and Find Full Text PDF