Regulation of the microtubule cytoskeleton is crucial for the development and maintenance of neuronal architecture, and recent studies have highlighted the significance of regulated RNA processing in the establishment and maintenance of neural circuits. In a genetic screen conducted using mechanosensory neurons of C. elegans, we identified a mutation in muscleblind-1/mbl-1 as a suppressor of loss of kinesin-13 family microtubule destabilizing factor klp-7.
View Article and Find Full Text PDFNeuronal migration and axon growth and guidance require precise control of microtubule dynamics and microtubule-based cargo transport. encodes the neuronal-specific β-tubulin isotype III, TUBB3, a component of neuronal microtubules expressed throughout the life of central and peripheral neurons. Human pathogenic missense variants result in altered TUBB3 function and cause errors either in the growth and guidance of cranial and, to a lesser extent, central axons, or in cortical neuronal migration and organization, and rarely in both.
View Article and Find Full Text PDFNeuronal polarization is facilitated by the formation of axons with parallel arrays of plus-end-out and dendrites with the nonuniform orientation of microtubules. In C. elegans, the posterior lateral microtubule (PLM) neuron is bipolar with its two processes growing along the anterior-posterior axis under the guidance of Wnt signaling.
View Article and Find Full Text PDFNeuronal injury often leads to devastating consequences such as loss of senses or locomotion. Restoration of function after injury relies on whether the injured axons can find their target cells. Although fusion between injured proximal axon and distal fragment has been observed in many organisms, its functional significance is not clear.
View Article and Find Full Text PDF