Publications by authors named "Dharmaraj N"

Preclinical testing of tissue engineering modalities are commonly performed in a healthy wound bed. These conditions do not represent clinically relevant compromised oral wound environments due to radiation treatments seen clinically. This study aimed to characterize the bone regeneration outcomes in critical-sized mandibular defects using particulate grafting in an irradiated preclinical model of compromised wound healing.

View Article and Find Full Text PDF

Oral squamous cell carcinoma (OSCC) is a highly unpredictable disease with devastating mortality rates that have not changed over the past decades, in the face of advancements in treatments and biomarkers, which have improved survival for other cancers. Delays in diagnosis are frequent, leading to more disfiguring treatments and poor outcomes for patients. The clinical challenge lies in identifying those patients at the highest risk of developing OSCC.

View Article and Find Full Text PDF

Oral squamous cell carcinoma (OSCC) presents significant treatment challenges due to its poor survival and intense pain at the primary cancer site. Cancer pain is debilitating, contributes to diminished quality of life, and causes opioid tolerance. The stimulator of interferon genes (STING) agonism has been investigated as an anti-cancer strategy.

View Article and Find Full Text PDF

Proteins that self-assemble into enclosed polyhedral cages, both naturally and by design, are garnering attention for their prospective utility in the fields of medicine and biotechnology. Notably, their potential for encapsulation and surface display are attractive for experiments that require protection and targeted delivery of cargo. The ability to control their opening or disassembly would greatly advance the development of protein nanocages into widespread molecular tools.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed a peptide-based immunotherapy called SynerGel, which is an injectable platform for delivering drugs directly into tumors.
  • The system uses a hydrogel loaded with antitumor cyclic dinucleotide (CDN) to promote immune responses while slowing down drug release compared to traditional hydrogels.
  • In animal studies, SynerGel significantly improved survival rates for mice with treatment-resistant oral tumors, with a median survival of 67.5 days versus 44 days for untreated controls.
View Article and Find Full Text PDF
Article Synopsis
  • Scientists are studying new treatments for solid tumors that don't always work well; they think combining radiation with certain drugs can help the immune system fight the cancer better.
  • In experiments with mice, they tested different combinations of treatments and found that using a mix of radiation and two specific drugs, along with existing immune checkpoint inhibitors, was super effective.
  • The best combination got rid of over 70% of tumors and helped the mice live longer because it improved the immune system's ability to remember and fight the cancer.
View Article and Find Full Text PDF

Immunotherapeutic treatments in head and neck cancer clinical trials include cancer vaccines targeting foreign viral antigens or mutational neoantigens derived from cancer-expressed proteins. Anti-tumor immune responses place cancer cells under selective pressure to lose or downregulate target antigens; therefore, vaccination against virus- or host- "driver" oncogenes are proposed as a strategy to overcome immune escape. Herein, we demonstrate the impact of immunogenic viral antigens on anti-tumor response and immune editing in MOC2-E6E7, a syngeneic murine oral cancer cell line expressing HPV-16 E6 and E7 oncoproteins.

View Article and Find Full Text PDF

Maxillofacial defects often present the clinical challenge of a compromised wound bed. Preclinical evaluation of tissue engineering techniques developed to facilitate healing and reconstruction typically involves animal models with ideal wound beds. The healthy wound bed scenario does not fully mimic the complex clinical environment in patients, which can lead to technology failure when translating from preclinical in vivo research to clinical use.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists are working on a new cancer treatment called STING immunotherapy, which uses special drugs called cyclic dinucleotides (CDNs) to help the immune system fight cancer.
  • However, existing methods need a lot of injections and don't work well on serious tumor types.
  • Researchers created a new gel called "STINGel" that delivers CDNs more effectively, helps improve survival rates in mice with tough cancers, and shows promise for better cancer treatments in the future.
View Article and Find Full Text PDF

The Carbon nanotubes (CNT) are potential candidate for many biomedical applications especially in targeted drug delivery for cancer diseases. However, the use of CNT has limitations due to its insolubility in aqueous media. The self-assembly of cyclic peptide encased on the CNT has enhanced its dispersion in aqueous medium which extend their applications as antibacterial and drug delivery agents.

View Article and Find Full Text PDF

A convenient synthesis of a library of tetrazoles through a novel and operationally simple protocol effecting the direct conversion of arylboronic acids catalyzed by a new ONO pincer-type Pd(II) complex under mild reaction conditions using the readily available reagents is reported. The palladium complex was reused up to four cycles in an open-flask condition.

View Article and Find Full Text PDF

Gold nanoparticles supported on magnesium oxide nanorods (Au-MgO) have been synthesised by a solution based chemical reduction method. Au-MgO nanorods were found to be an efficient heterogeneous catalyst for oxidation of alcohols with hydrogen peroxide in aqueous medium at room temperature. To find out the best reaction conditions for oxidation, optimization of catalyst quantity, solvent, mole equivalence of hydrogen peroxide were carried out.

View Article and Find Full Text PDF

A set each of new bivalent and trivalent ruthenium complexes, [Ru(III)(HL)Cl2(EPh3)2] and [Ru(II)(L)(CO)(EPh3)2] (E = P (complexes and ) or As (complexes and )) were synthesised from the reactions of [Ru(III)Cl3(EPh3)3] with 2-hydroxynaphthaldehyde benzoic acid hydrazone (H2L) in methanol-chloroform and characterized by elemental analysis, spectral data and XRD study. A suitable mechanism to account for the formation of bivalent ruthenium carbonyl complexes from the corresponding trivalent precursors is provided by considering the role of added base in the reaction. Interaction of complexes with CT-DNA/bovine serum albumin was analysed with absorption and emission spectral titration studies.

View Article and Find Full Text PDF

Ceria supported gold nanoparticles (Au-CeO2 NPs) were prepared by a simple deposition-precipitation method. X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR) and Raman analysis indicated the formation of gold nanoparticles over phase pure cerianite ceria support. The presence of gold nanoparticles was well identified by UV-DRS study.

View Article and Find Full Text PDF

Synthesis, spectral, electrochemical and single crystal X-ray diffraction data of a new series of DMSO containing bivalent ruthenium hydrazone complexes are presented. XRD data of two of the new complexes revealed an octahedral coordination around the ruthenium ion satisfied by NOS2Cl2 atoms. Electrochemical studies showed the metal centred, quasi-reversible, one-electron redox behaviour of the new complexes.

View Article and Find Full Text PDF

Indium(III) hydroxide (In(OH)3) powders prepared via Triton X-100 mediated hydrothermal method was sintered at different temperatures (400, 500 and 600°C) to yield indium(III) oxide nanoparticles (In2O3 NPs). Thermal studies of In(OH)3 confirmed complete conversion to In2O3 around 400°C. Powder X-ray diffraction (XRD) pattern of sintered In2O3 nanoparticles revealed the formation of phase pure cubic In2O3.

View Article and Find Full Text PDF

Study Question: Are the transmembrane mucins, MUC1, MUC4 and MUC16, differentially expressed in endometriosis compared with normal endometrium?

Summary Answer: This study revealed that transmembrane mucin expression does not vary significantly in normal endometrium during the menstrual cycle and is not altered in endometriosis relative to the epithelial marker, cytokeratin-18 (KRT18).

What Is Known Already: Increased serum levels of the transmembrane mucin fragments MUC1, MUC4 and MUC16 that normally dominate the apical surface of simple epithelia are found in several pathological conditions, including endometriosis. Altered mucin expression in gynecologic diseases may promote infertility or endometrial pathologies.

View Article and Find Full Text PDF

An efficient method to degrade 4-nitrophenol (4-NP) using cadmium sulphide nanoparticles (CdS NPs) prepared by a novel method as a photocatalyst in the presence of H2O2 as a free radical generator was developed. To investigate the degradation mechanism, the interaction between the substrate (4-NP) and the catalyst (CdS NPs) was studied using UV-visible absorption and emission spectral techniques. Investigation on the effect of pH of the medium on the degradability of 4-NP revealed that neither the acidic (pH 4) nor alkaline (pH 9) is as suitable as pH 6 due to the desorption of 4-NP from the catalyst surface at the former condition and the existence of 4-NP in its most stable quinonoid form at the latter pH.

View Article and Find Full Text PDF

Two new, binuclear copper(II) hydrazone complexes have been synthesized and characterized by various physico-chemical techniques including single crystal X-ray diffraction. Interaction of these complexes with nucleotide and protein were analyzed by in vitro biochemical and electrochemical analysis. Both the complexes exhibited intercalative mode of binding with DNA.

View Article and Find Full Text PDF

A new set of ruthenium(II) hydrazone complexes [Ru(H)(CO)(PPh3)2(L)] (1) and [RuCl2(DMSO)2(HL)] (2), with triphenyl phosphine or DMSO as co-ligands was synthesized by reacting benzoyl pyridine furoic acid hydrazone (HL) with [Ru(H)(Cl)(CO)(PPh3)3] and [RuCl2(DMSO)4]. The single crystal X-ray data of complexes 1 and 2 revealed an octahedral geometry around the ruthenium ion in which the hydrazone is coordinated through ON and NN atoms in complexes 1 and 2 respectively. The interaction of the compounds with calf thymus DNA (CT-DNA) has been estimated by absorption and emission titration methods which indicated that the ligand and the complexes interacted with CT-DNA through intercalation.

View Article and Find Full Text PDF

Mesoporous nickel aluminosilicate, a solid acid catalyst prepared by sol-gel technique was utilized as a heterogeneous catalyst for the synthesis of symmetrical ethers by dehydro-condensation of alcohols. The prepared catalysts were characterized by Fourier-transform infra red spectroscopy (FT-IR), powder X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), N2 adsorption-desorption analysis, temperature programmed desorption of ammonia (TPD) and X-ray photoelectron spectroscopic techniques. The presence of the catalyst assisted the etherification reaction in 30 minutes.

View Article and Find Full Text PDF

A new set of penta-coordinated copper(II) hydrazone complexes containing solvated methanol were synthesized by reacting the hydrazone ligands, 2-acetylpyridine benzoyl hydrazone (HL1) and 2-acetylpyridine thiophene-2-carboxylic acid hydrazone (HL2), with [CuCl2(DMSO)2] and characterized by different spectral methods. Single crystal X-ray diffraction studies of the complexes revealed that both of them, [CuCl(L1)(MeOH)] (1) and [CuCl(L2)(MeOH)] (2), have square pyramidal geometry around the cupric ion, in which the hydrazone is coordinated through NNO atoms along with a molecule of methanol in the apical position. Interaction of the ligands HL1 and HL2 along with the corresponding copper complexes 1 and 2 with calf thymus DNA (CT-DNA) has been estimated by absorption and emission titration methods which revealed that the compounds interacted with CT-DNA through intercalation.

View Article and Find Full Text PDF

Nanocrystalline, tin(IV) oxide (SnO(2)) particles has been prepared by thermal decomposition of tin oxalate precursor obtained from the reactions of tin(IV) chloride and sodium oxalate using eggshell membrane (ESM). The as-prepared SnO(2) nanoparticles were characterized by thermal studies, transmission electron microscopy (TEM), powder X-ray diffraction (XRD), Raman, FT-IR and UV-visible studies and used as a photocatalyst for the degradation of rhodamine-B (Rh-B) dye. The size of the prepared nanoparticles was in the range of 5-12nm as identified from the TEM images.

View Article and Find Full Text PDF

Bivalent, ruthenium organometallics containing hydrazone ligands with the composition [RuH(CO)(PPh(3))(2)(L(1-3))] (4-6) have been synthesised from the reactions of [RuH(2)(CO)(PPh(3))(3)] and benzoic acid pyridine-2-ylmethylene-hydrazide (HL(1)) (1) /benzoic acid (1-pyridin-2-yl-ethylidene)-hydrazide (HL(2)) (2)/benzoic acid (phenyl-pyridin-2-yl-methylene)-hydrazide (HL(3)) (3) and characterised by various physico-chemical techniques. The X-ray crystal structure of one of the above complexes, [RuH(CO)(PPh(3))(2)(L(3))] (6) demonstrated a distorted octahedral coordination geometry around the metal centre. Results of our investigation on the effect of substitution (H or CH(3) or C(6)H(5)) at the azomethine carbon of coordinated hydrazone in these ruthenium chelates on the potential binding with DNA/BSA, free radical scavenging and cytotoxicity is presented.

View Article and Find Full Text PDF

Three new bivalent nickel hydrazone complexes have been synthesised from the reactions of [NiCl(2)(PPh(3))(2)] with H(2)L {L = dianion of the hydrazones derived from the condensation of o-hydroxynaphthaldehyde with furoic acid hydrazide (H(2)L(1)) (1)/thiophene-2-acid hydrazide (H(2)L(2)) (2)/isonicotinic acid hydrazide (H(2)L(3)) (3)} and formulated as [Ni(L(1))(PPh(3))] (4), [Ni(L(2))(PPh(3))] (5) and [Ni(L(3))(PPh(3))] (6). Structural characterization of these compounds 4-6 were accomplished by using various physico-chemical techniques. Single crystal X-ray diffraction data of complexes 4 and 5 proved their distorted square planar geometry.

View Article and Find Full Text PDF