Introduction: Nipah and Hendra viruses belong to the Paramyxoviridae family, which pose a significant threat to human health, with sporadic outbreaks causing severe morbidity and mortality. Early symptoms include fever, cough, sore throat, and headache, which offer little in terms of differential diagnosis. There are no specific therapeutics and vaccines for these viruses.
View Article and Find Full Text PDFElectrochemical biosensors, known for their low cost, sensitivity, selectivity, and miniaturization capabilities, are ideal for point-of-care devices. The magnetic metal-organic framework (MMOF), synthesized using the in-situ growth method, consists of ferric salt, magnetic nanoparticles, histidine, and benzene tetracarboxylic acid. MMOF was sequentially modified with aptamer-biotin and streptavidin-horseradish peroxidase, serving as a detector for spike protein and a transducer converting electrochemical signals using HO-hydroquinone on a screen-printed electrode.
View Article and Find Full Text PDFPaper-based microfluidic devices are popular for their ability to automate multistep assays for chemical or biological sensing at a low cost, but the design of paper microfluidic networks has largely relied on experimental trial and error. A few mathematical models of flow through paper microfluidic devices have been developed and have succeeded in explaining experimental flow behavior. However, the reverse engineering problem of designing complex paper networks guided by appropriate mathematical models is largely unsolved.
View Article and Find Full Text PDFThe abolition of environmental pollutants and production of hydrogen (H) from water using a heterogeneous photocatalyst is a demanding science of the current scenario to solve the increasing environmental pollution and worldwide energy catastrophe in modern life. To validate this purpose, the design of low-cost and durable semiconductor-based photocatalysts with great light absorption capacity becomes the most challenging issue for researchers. Regarding this, herein the phosphotungstic acid (HPW)-anchored ZrO(OH)(BDC) (UiO-66) metal-organic framework (MOF), i.
View Article and Find Full Text PDFDetection of minute quantities of target antigens in serum samples (consisting of a mixture of proteins/biomolecules) can be achieved by enhancement of the capture efficiencies of heterogeneous immunosensors. An important process parameter which affects the capture of target analytes in such immunosensors is the pH of the solution as the target proteins present in the serum samples are charged molecules. Here, we investigated the capture of prostate-specific antigens (PSAs), first in a mixed-analyte system wherein the solution contained two other non-specific proteins along with the target analyte, using the surface plasmon resonance spectroscopy.
View Article and Find Full Text PDFPaper-based microfluidic devices are rapidly becoming popular as a platform for developing point-of-care medical diagnostic tests. However, the design of these devices largely relies on trial and error, owing to a lack of proper understanding of fluid flow through porous membranes. Any porous material having pores of multiple sizes contains partially saturated regions, i.
View Article and Find Full Text PDFHigher capture efficiency of biomarkers in heterogeneous immunosensors would enable early detection of diseases. Several strategies are used to improve the capture efficiency of these immunosensors including the geometry of the system along with the transport and reaction parameters. Having a prior knowledge of the behavior of the above parameters would facilitate the design of an efficient immunosensor.
View Article and Find Full Text PDFHigher capture efficiency in heterogeneous immunosensors is desirable for the detection of cancer biomarkers at low concentrations. The process of the capture of these antigens is transport limited since the rates of antigen/antibody reactions are faster. In the case of non-flow systems, diffusive transport has contributions from both translational and rotational phenomena.
View Article and Find Full Text PDFA series of Cs salt of phosphotungstic acid (Cs-PTA) supported on MCM-41 (Cs-PTA/MCM-41) was synthesized by a wet impregnation method and thoroughly characterized by using various analytical techniques, viz. X-ray diffraction, UV-Vis diffused reflectance spectroscopy (UV-Vis DRS), nitrogen adsorption desorption, scanning electron microscopy (SEM), Infrared spectra (FTIR), temperature programmed reduction (TPR), and temperature programmed desorption (TPD). The spectroscopic results revealed that Cs-PTA is highly dispersed on a MCM-41 surface.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2009
The Mobil Composition of Matter No. 41 (MCM-41) containing Cu and Al with Si/Al ratios varying from 100 to 10 and 1 to 6wt.% of Cu was synthesized under hydrothermal and impregnation conditions, respectively.
View Article and Find Full Text PDF