Iron protoporphyrin IX (heme) is a redox-active cofactor that is bound in mammalian cells by GAPDH and allocated by a process influenced by physiologic levels of NO. This impacts the activity of many heme proteins including indoleamine dioxygenase-1 (IDO1), a redox enzyme involved in immune response and tumor growth. To gain further understanding we created a tetra-Cys human GAPDH reporter construct (TC-hGAPDH) which after labeling could indicate its heme binding by fluorescence quenching.
View Article and Find Full Text PDFIron protoporphyrin IX (heme) is an essential cofactor that is chaperoned in mammalian cells by GAPDH in a process regulated by NO. To gain further understanding we generated a tetra-Cys human GAPDH reporter construct (TC-hGAPDH) which after being expressed and labeled with fluorescent FlAsH reagent could indicate heme binding by fluorescence quenching. When purified or expressed in HEK293T mammalian cells, FlAsH-labeled TC-hGAPDH displayed physical, catalytic, and heme binding properties like native GAPDH and its heme binding (2 mol per tetramer) quenched its fluorescence by 45-65%.
View Article and Find Full Text PDFA natural heme deficiency that exists in cells outside of the circulation broadly compromises the heme contents and functions of heme proteins in cells and tissues. Recently, we found that the signaling molecule, nitric oxide (NO), can trigger or repress the deployment of intracellular heme in a concentration-dependent hormetic manner. This uncovers a new role for NO and sets the stage for it to shape numerous biological processes by controlling heme deployment and consequent heme protein functions in biology.
View Article and Find Full Text PDF