African green monkey (AGM) spumaretroviruses have been less well-studied than other simian foamy viruses (SFVs). We report the biological and genomic characterization of SFVcae_FV2014, which was the first foamy virus isolated from an African green monkey (AGM) and was found to be serotype 3. Infectivity studies in various cell lines from different species (mouse, dog, rhesus monkey, AGM, and human) indicated that like other SFVs, SFVcae_FV2014 had broad species and cell tropism, and in vitro cell culture infection resulted in cytopathic effect (CPE).
View Article and Find Full Text PDFAdvanced nucleic acid-based technologies are powerful research tools for novel virus discovery but need to be standardized for broader applications such as virus detection in biological products and clinical samples. We have used well-characterized retrovirus stocks to evaluate the limit of detection (LOD) for broad-range PCR with electrospray ionization mass spectrometry (PCR/ESI-MS or PLEX-ID), RT-PCR assays, and virus microarrays. The results indicated that in the absence of background cellular nucleic acids, PLEX-ID and RT-PCR had a similar LOD for xenotropic murine retrovirus-related virus (XMRV; 3.
View Article and Find Full Text PDFWe have investigated the influence of naturally occurring simian foamy viruses (SFVs) on simian immunodeficiency virus (SIV) infection and disease in Indian rhesus macaques. Animals were divided into two groups based upon presence or absence of SFV; in each group, eight monkeys were injected with SIV(mac239) virus obtained from a molecular clone and four were injected with medium. Blood was collected every two weeks for evaluation of SIV infection based upon T cell-subsets, plasma viral load, development and persistence of virus-specific antibodies, and clinical changes by physical examination and hematology.
View Article and Find Full Text PDFThe discovery of xenotropic murine leukemia virus-related virus (XMRV) in human tissue samples has been shown to be due to virus contamination with a recombinant murine retrovirus. However, due to the unknown pathogenicity of this novel retrovirus and its broad host range, including human cell lines, it is important to understand the modes of virus transmission and develop mitigation and management strategies to reduce the risk of human exposure and infection. XMRV transmission was evaluated by whole-blood transfusion in rhesus macaques.
View Article and Find Full Text PDFXenotropic murine leukemia virus-related virus (XMRV) was discovered in human prostate tumors and later in some chronic fatigue syndrome (CFS) patients. However, subsequent studies have identified various sources of potential contamination with XMRV and other murine leukemia virus (MLV)-related sequences in test samples. Biological and nucleotide sequence analysis indicates that XMRV is distinct from known xenotropic MLVs and has a broad host range and cell tropism including human cells.
View Article and Find Full Text PDFEndogenous retroviral sequences are present in high copy numbers in the genomes of all species and may be expressed as RNAs; however, the majority are defective for virus production. Although virus has been isolated from various Old World monkey and New World monkey species, there has been no report of endogenous retroviruses produced from African green monkey (AGM) tissues or cell lines. We have recently developed a stepwise approach for evaluating the presence of latent viruses by chemical induction (Khan et al.
View Article and Find Full Text PDFBackground: Human infections with simian foamy viruses (SFVs) have been reported after occupational and nonoccupational exposure to infected animals and their tissues, blood, and body fluids, although there is no evidence for human-to-human transmission. We previously demonstrated SFV transmission in monkeys by blood transfusion with whole blood from one donor animal that had a low neutralizing antibody (NAb) endpoint titer, whereas blood transfusion from a second donor monkey that had a high NAb titer failed to transmit virus. These results suggested a role for NAbs in SFV transmission and establishment of infection.
View Article and Find Full Text PDFThe recent urgency to develop new vaccines for emerging and re-emerging diseases, such as pandemic influenza, has necessitated the use of cell substrates not previously used in the manufacture of licensed vaccines. A major safety concern in the use of novel cell substrates is the presence of potential adventitious agents, such as latent and occult viruses, that may not be detected by currently used conventional assays. In cases where the novel cell substrate is known to be tumorigenic, there are additional safety issues related to tumorigenicity of intact cells and oncogenicity of residual cellular DNA.
View Article and Find Full Text PDF